skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Astronomical and tectonic influences on climate and deposition revealed through radioisotopic geochronology and Bayesian age-depth modeling of the early Eocene Green River Formation, Wyoming, USA
The Wilkins Peak Member (WPM) of the Green River Formation in Wyoming, USA, comprises alternating lacustrine and alluvial strata that preserve a record of terrestrial climate during the early Eocene climatic optimum. We use a Bayesian framework to develop age-depth models for three sites, based on new 40Ar/39Ar sanidine and 206Pb/238U zircon ages from seven tuffs. The new models provide two- to ten-fold increases in temporal resolution compared to previous radioisotopic age models, confirming eccentricity-scale pacing of WPM facies, and permitting their direct comparison to astronomical solutions. Starting at ca. 51 Ma, the median ages for basin-wide flooding surfaces atop six successive alluvial marker beds coincide with short eccentricity maxima in the astronomical solutions. These eccentricity maxima have been associated with hyperthermal events recorded in marine strata during the early Eocene. WPM strata older than ca. 51 Ma do not exhibit a clear relationship to the eccentricity solutions, but accumulated 31%−35% more rapidly, suggesting that the influence of astronomical forcing on sedimentation was modulated by basin tectonics. Additional high-precision radioisotopic ages are needed to reduce the uncertainty of the Bayesian model, but this approach shows promise for unambiguous evaluation of the phase relationship between alluvial marker beds and theoretical eccentricity solutions.  more » « less
Award ID(s):
1813088
PAR ID:
10435449
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
GSA Bulletin
ISSN:
0016-7606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The Eocene Huitrera Formation of northwestern Patagonia, Argentina, is renowned for its diverse, informative, and outstandingly preserved fossil biotas. In northwest Chubut Province, at the Laguna del Hunco locality, this unit includes one of the most diverse fossil floras known from the Eocene, as well as significant fossil insects and vertebrates. It also includes rich fossil vertebrate faunas at the Laguna Fría and La Barda localities. Previous studies of these important occurrences have provided relatively little sedimentological detail, and radioisotopic age constraints are relatively sparse and in some cases obsolete. Here, we describe five fossiliferous lithofacies deposited in four terrestrial depositional environments: lacustrine basin floor, subaerial pyroclastic plain, vegetated, waterlogged pyroclastic lake margin, and extracaldera incised valley. We also report several new 40Ar/39Ar age determinations. Among these, the uppermost unit of the caldera-forming Ignimbrita Barda Colorada yielded a 40Ar/39Ar age of 52.54 ± 0.17 Ma, ∼6 m.y. younger than previous estimates, which demonstrates that deposition of overlying fossiliferous lacustrine strata (previously constrained to older than 52.22 ± 0.22 Ma) must have begun almost immediately on the subsiding ignimbrite surface. A minimum age for Laguna del Hunco fossils is established by an overlying ignimbrite with an age of 49.19 ± 0.24 Ma, confirming that deposition took place during the early Eocene climatic optimum. The Laguna Fría mammalian fauna is younger, constrained between a valley-filling ignimbrite and a capping basalt with 40Ar/39Ar ages of 49.26 ± 0.30 Ma and 43.50 ± 1.14 Ma, respectively. The latter age is ∼4 m.y. younger than previously reported. These new ages more precisely define the age range of the Laguna Fría and La Barda faunas, allowing greatly improved understanding of their positions with respect to South American mammal evolution, climate change, and geographic isolation. 
    more » « less
  2. Abstract The Manantiales basin contains >4 km of nonmarine sedimentary strata that accumulated at 31.75–32.5°S during construction of the High Andes. We report field and analytical data from the underexplored northern portion of this basin. The basin contains upper Eocene–middle Miocene strata that accumulated in back‐bulge or distal foredeep through inner‐wedge‐top depozones of the Andean foreland basin as it migrated through this region. A revised accumulation history for the basin‐filling Río de los Patos and Chinches Formations supports a regional pattern of flexure in front of an east‐vergent orogenic wedge. The former formation consists of eolian and localized fluviolacustrine deposits which accumulated between ca. 38 Ma and ≤34 Ma during thrust belt development in Chile. A subsequent ≤12 Myr hiatus may reflect passage of the flexural forebulge or cessation of subsidence during orogenic quiescence. The overlying Chinches Formation records a transition from the foredeep to wedge‐top depozones. Foredeep deposits of east‐flowing, meandering streams were incised prior to ca. 18 Ma, after which deposits of axial rivers, playas, and perennial lakes ponded in a depression behind orogenic topography to the east. After ca. 15 Ma, alluvial‐fan deposits were syndepositionally deformed adjacent to growing thrust‐belt structures along the western basin margin. Although the basin record supports a westward step in the locus of deformation during Early–Middle Miocene time, it conflicts with models involving west‐vergence of the orogenic wedge. Rather, this pattern can be explained as out‐of‐sequence deformation alternating with wedge forward propagation, consistent with Coulomb wedge models incorporating syntectonic sedimentation. 
    more » « less
  3. The Early Eocene Climatic Optimum (~53-50 Ma) represents the most recent episode of sustained greenhouse climate, during which the deep oceans were as much as 12°C warmer than today. The lacustrine Wilkins Peak Member of the Green River Formation (Wyoming, USA) is one of the premier locations to study this period of global warmth due to its rich terrestrial archive of climate dynamics, biology, and geomorphology. Using radioisotopic geochronology, cyclostratigraphy, sedimentology, and geochemistry, previous studies have leveraged this extensive record to evaluate the ancient lake system’s temporal evolution and response to climate. Much prior work on Green River Formation cyclostratigraphy, including that of Alfred G. Fischer, has focused on the evaluation of oil yield, a measure of organic richness. In this study, X-Ray fluorescence (XRF) core scanning of a basin center core, Solvay S-34-1, is used to produce a high resolution (5mm), continuous, multi-proxy elemental record of the complete Wilkins Peak Member, spanning 240 meters. This new geochemical assessment is a component of a larger multidisciplinary investigation that that is underway, including new magnetostratigraphic and radioisotopic geochronology. Elemental abundances for a range of measured elements, such as Si, S, Cl, K, Ca, Ti, Fe, Zn, Br, and Rb, are interpreted in terms of evaporitic, siliciclastic, and redox-sensitive sedimentation, and show variable responses at specific Milankovitch (eccentricity, obliquity, precession) and sub-Milankovitch time scales. Using this long high-resolution geochemical dataset of the Early Eocene Climatic Optimum, we consider potential linkages between Milankovitch forcing and sub-Milankovitch forcing, and plausible non-linear transfer functions that translate the astronomical insolation signal into the stratigraphic archive. 
    more » « less
  4. Abstract Since the publication of 40Ar/39Ar dates from Cretaceous bentonites in the Western Interior Basin by J.D. Obradovich in 1993 and in Japan by J.D. Obradovich and colleagues in 2002, improvements in the 40Ar/39Ar method have included a shift to astronomically calibrated ages for standard minerals and development of a new generation of multi-collector mass spectrometers. Thus, the 40Ar/39Ar chronometer can yield results that are synchronous with U-Pb zircon dates and astrochronologic age models for Cretaceous strata. Ages determined by Obradovich have ± 2σ analytical uncertainties of ± 400 ka (excluding J value or systematic contributions) that have been used to discriminate stratigraphic events at ca. 1 Ma resolution. From among several dozen sanidine samples, 32 of which were dated by Obradovich in 1993, we present new multi-collector 40Ar/39Ar ages that reduce the average analytical uncertainties by nearly an order of magnitude. These new ages (where the uncertainties also include the contribution of the neutron fluence J value) include: Topmost Bentonite, Mowry Shale, Kaycee, Wyoming, USA, 97.52 ± 0.09 Ma Clay Spur Bentonite, Mowry Shale, Casper, Wyoming, 98.17 ± 0.11 Ma Arrow Creek Bentonite, Colorado Shale, Montana, USA, 99.12 ± 0.14 Ma Upper Newcastle Sandstone, Black Hills, Wyoming, 99.49 ± 0.07 Ma Middle Newcastle Sandstone, Black Hills, Wyoming, 99.58 ± 0.12 Ma Shell Creek Shale, Bighorn Basin, Crow Reservation, Wyoming, 99.62 ± 0.07 Ma Shell Creek Shale, Bighorn Basin, Greybull, Wyoming, 99.67 ± 0.13 Ma Shell Creek Shale, Bighorn Basin, Lander, Montana, 100.07 ± 0.07 Ma Muddy Sandstone, Wind River Basin, Wyoming, 101.23 ± 0.09 Ma Thermopolis Shale, Bighorn Basin, Wyoming, 101.36 ± 0.11 Ma Vaughn Member, Blackleaf Formation, Sweetgrass Arch, Montana, 102.68 ± 0.07 Ma Taft Hill Member, Blackleaf Formation, Sweetgrass Arch, Montana, 103.08 ± 0.11 Ma Base of the Skull Creek Shale, Black Hills, Wyoming, 104.87 ± 0.10 Ma Thermopolis Shale, Bighorn Basin, Wyoming, 106.37 ± 0.11 Ma A new U-Pb zircon age of 104.69 ± 0.07 Ma from the Skull Creek Shale at Dinosaur Ridge, Colorado, USA, is close to the new 40Ar/39Ar age of the Skull Creek Shale in the Black Hills, Wyoming, but 5 m.y. is missing in the unconformity between the Skull Creek Shale of the Black Hills and the overlying Newcastle Sandstone. Considering the average total uncertainties that include decay constant and standard age or tracer composition for the 40Ar/39Ar (± 0.19 Ma) and the U-Pb (± 0.13 Ma) ages does not alter this finding. Moreover, the lower Thermopolis Shale in the Bighorn Basin is 1.5 Ma older than the Skull Creek Shale in the Black Hills. The 100.07 ± 0.07 Ma Shell Creek Bentonite in Montana is close to the Albian–Cenomanian boundary age of 100.2 ± 0.2 Ma of Obradovich and colleagues from Hokkaido, Japan, and 100.5 ± 0.5 Ma adopted in the 2012 geological time scale of J.G. Ogg and L.A. Hinnov. Our findings indicate that correlations based on similarity of lithology, without independent radioisotopic ages or detailed biostratigraphic constraints, can be problematic or invalid. There is much more time missing in unconformities than has been previously recognized in these important, petroleum-bearing reservoir strata. 
    more » « less
  5. The Alaska Range suture zone exposes Cretaceous to Quaternary marine and nonmarine sedimentary and volcanic rocks sandwiched between oceanic rocks of the accreted Wrangellia composite terrane to the south and older continental terranes to the north. New U-Pb zircon ages, 40Ar/39Ar, ZHe, and AFT cooling ages, geochemical compositions, and geological field observations from these rocks provide improved constraints on the timing of Cretaceous to Miocene magmatism, sedimentation, and deformation within the collisional suture zone. Our results bear on the unclear displacement history of the seismically active Denali fault, which bisects the suture zone. Newly identified tuffs north of the Denali fault in sedimentary strata of the Cantwell Formation yield ca. 72 to ca. 68 Ma U-Pb zircon ages. Lavas sampled south of the Denali fault yield ca. 69 Ma 40Ar/39Ar ages and geochemical compositions typical of arc assemblages, ranging from basalt-andesite-trachyte, relatively high-K, and high concentrations of incompatible elements attributed to slab contribution (e.g., high Cs, Ba, and Th). The Late Cretaceous lavas and bentonites, together with regionally extensive coeval calc-alkaline plutons, record arc magmatism during contractional deformation and metamorphism within the suture zone. Latest Cretaceous volcanic and sedimentary strata are locally overlain by Eocene Teklanika Formation volcanic rocks with geochemical compositions transitional between arc and intraplate affinity. New detrital-zircon data from the modern Teklanika River indicate peak Teklanika volcanism at ca. 57 Ma, which is also reflected in zircon Pb loss in Cantwell Formation bentonites. Teklanika Formation volcanism may reflect hypothesized slab break-off and a Paleocene–Eocene period of a transform margin configuration. Mafic dike swarms were emplaced along the Denali fault from ca. 38 to ca. 25 Ma based on new 40Ar/39Ar ages. Diking along the Denali fault may have been localized by strike-slip extension following a change in direction of the subducting oceanic plate beneath southern Alaska from N-NE to NW at ca. 46–40 Ma. Diking represents the last recorded episode of significant magmatism in the central and eastern Alaska Range, including along the Denali fault. Two tectonic models may explain emplacement of more primitive and less extensive Eocene–Oligocene magmas: delamination of the Late Cretaceous–Paleocene arc root and/or thickened suture zone lithosphere, or a slab window created during possible Paleocene slab break-off. Fluvial strata exposed just south of the Denali fault in the central Alaska Range record synorogenic sedimentation coeval with diking and inferred strike-slip displacement. Deposition occurred ca. 29 Ma based on palynomorphs and the youngest detrital zircons. U-Pb detrital-zircon geochronology and clast compositional data indicate the fluvial strata were derived from sedimentary and igneous bedrock presently exposed within the Alaska Range, including Cretaceous sources presently exposed on the opposite (north) side of the fault. The provenance data may indicate ~150 km or more of dextral offset of the ca. 29 Ma strata from inferred sediment sources, but different amounts of slip are feasible. Together, the dike swarms and fluvial strata are interpreted to record Oligocene strike-slip movement along the Denali fault system, coeval with strike-slip basin development along other segments of the fault. Diking and sedimentation occurred just prior to the onset of rapid and persistent exhumation ca. 25 Ma across the Alaska Range. This phase of reactivation of the suture zone is interpreted to reflect the translation along and convergence of southern Alaska across the Denali fault driven by highly coupled flat-slab subduction of the Yakutat microplate, which continues to accrete to the southern margin of Alaska. Furthermore, a change in Pacific plate direction and velocity at ca. 25 Ma created a more convergent regime along the apex of the Denali fault curve, likely contributing to the shutting off of near-fault extension- facilitated arc magmatism along this section of the fault system and increased exhumation rates. 
    more » « less