skip to main content


This content will become publicly available on July 19, 2024

Title: Catalytic reduction of dinitrogen to ammonia using molybdenum porphyrin complexes
Porphyrin complexes are well-known in O 2 and CO 2 reduction, but their application to N 2 reduction is less developed. Here, we show that oxo and nitrido complexes of molybdenum supported by tetramesitylporphyrin (TMP) are effective precatalysts for catalytic N 2 reduction to ammonia, verified by 15 N 2 labeling studies and other control experiments. Spectroscopic and electrochemical studies illuminate some relevant thermodynamic parameters, including the N–H bond dissociation free energy of (TMP)MoNH (43 ± 2 kcal mol −1 ). We place these results in the context of other work on homogeneous N 2 reduction catalysis.  more » « less
Award ID(s):
1954942 1954254
NSF-PAR ID:
10435561
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Faraday Discussions
Volume:
243
ISSN:
1359-6640
Page Range / eLocation ID:
429 to 449
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. [Cp*Rh] complexes (Cp* = pentamethylcyclopentadienyl) supported by bidentate chelating ligands are a useful class of compounds for studies of redox chemistry and catalysis. Here, we show that the bis(2-pyridyl)methane ligand, also known as dipyridylmethane or dpma, can support [Cp*Rh] complexes in the formally + iii and + ii rhodium oxidation states. Specifically, two new rhodium complexes ([Cp*Rh(dpma)(L)] n+ , L = Cl − , CH 3 CN) have been isolated and structurally characterized, and the properties of the complexes have been compared with those of [Cp*Rh] complexes bearing the related dimethyldipyridylmethane (Me 2 dpma) ligand. Complex [Cp*Rh(dpma)(NCCH 3 )] 2+ displays a quasireversible rhodium( iii / ii ) reduction by cyclic voltammetry; related electron paramagnetic resonance (EPR) spectroscopic studies confirm access to the unusual rhodium( ii ) oxidation state. Further reduction to the formally rhodium( i ) oxidation state, however, is followed by deprotonation of dpma, as observed in electrochemical studies and chemical reduction experiments. This reactivity can be understood to occur as a consequence of the presence of doubly benzylic protons in the dpma ligand, since use of the analogous Me 2 dpma enables reduction to rhodium( i ) without involvement of ligand deprotonation. These findings highlight the important role of the ligand backbone substitution pattern in influencing the stability of highly-reduced complexes, a key class of metal species for study of electron and proton management in catalysis. 
    more » « less
  2. The use of 18-crown-6 (18-c-6) in place of 2.2.2-cryptand (crypt) in rare earth amide reduction reactions involving potassium has proven to be crucial in the synthesis of Ln( ii ) complexes and isolation of their CO reduction products. The faster speed of crystallization with 18-c-6 appears to be important. Previous studies have shown that reduction of the trivalent amide complexes Ln(NR 2 ) 3 (R = SiMe 3 ) with potassium in the presence of 2.2.2-cryptand (crypt) forms the divalent [K(crypt)][Ln II (NR 2 ) 3 ] complexes for Ln = Gd, Tb, Dy, and Tm. However, for Ho and Er, the [Ln(NR 2 ) 3 ] 1− anions were only isolable with [Rb(crypt)] 1+ counter-cations and isolation of the [Y II (NR 2 ) 3 ] 1− anion was not possible under any of these conditions. We now report that by changing the potassium chelator from crypt to 18-crown-6 (18-c-6), the [Ln(NR 2 ) 3 ] 1− anions can be isolated not only for Ln = Gd, Tb, Dy, and Tm, but also for Ho, Er, and Y. Specifically, these anions are isolated as salts of a 1 : 2 potassium : crown sandwich cation, [K(18-c-6) 2 ] 1+ , i.e. [K(18-c-6) 2 ][Ln(NR 2 ) 3 ]. The [K(18-c-6) 2 ] 1+ counter-cation was superior not only in the synthesis, but it also allowed the isolation of crystallographically-characterizable products from reactions of CO with the [Ln(NR 2 ) 3 ] 1− anions that were not obtainable from the [K(crypt)] 1+ analogs. Reaction of CO with [K(18-c-6) 2 ][Ln(NR 2 ) 3 ], generated in situ , yielded crystals of the ynediolate products, {[(R 2 N) 3 Ln] 2 (μ-OCCO)} 2− , which crystallized with counter-cations possessing 2 : 3 potassium : crown ratios, i.e. {[K 2 (18-c-6) 3 ]} 2+ , for Gd, Dy, Ho. In contrast, reaction of CO with a solution of isolated [K(18-c-6) 2 ][Gd(NR 2 ) 3 ], produced crystals of an enediolate complex isolated with a counter-cation with a 2 : 2 potassium : crown ratio namely [K(18-c-6)] 2 2+ in the complex [K(18-c-6)] 2 {[(R 2 N) 2 Gd 2 (μ-OCHCHO) 2 ]}. 
    more » « less
  3. Abstract Global use of reactive nitrogen (N) has increased over the past century to meet growing food and biofuel demand, while contributing to substantial environmental impacts. Addressing continued N management challenges requires anticipating pathways of future N use. Several studies in the scientific literature have projected future N inputs for crop production under a business-as-usual scenario. However, it remains unclear how using yield response functions to characterize a given level of technology and management practices (TMP) will alter the projections when using a consistent dataset. In this study, to project N inputs to 2050, we developed and tested three approaches, namely ‘Same nitrogen use efficiency (NUE)’, ‘Same TMP’, and ‘Improving TMP’. We found the approach that considers diminishing returns in yield response functions (‘Same TMP’) resulted in 268 Tg N yr −1 of N inputs, which was 61 and 48 Tg N yr −1 higher than when keeping NUE at the current level with and without considering changes in crop mix, respectively. If TMP continue to evolve at the pace of past five decades, projected N inputs reduce to 204 Tg N yr −1 , a value that is still 59 Tg N yr −1 higher than the inputs in the baseline year 2006. Overall, our results suggest that assuming a constant NUE may be too optimistic in projecting N inputs, and the full range of projection assumptions need to be carefully explored when investigating future N budgets. 
    more » « less
  4. null (Ed.)
    To ascertain the influence of binary ligand systems [1,1-dicyanoethylene-2,2-dithiolate (i-mnt −2 ) and polyamine {tetraen = tris(2-aminoethyl)amine, tren = diethylene triamine and opda = o -phenylenediamine}] on the coordination modes of the Ni( ii ) metal center and resulting supramolecular architectures, a series of nickel( ii ) thiolate complexes [Ni(tetraen)(i-mnt)](DMSO) ( 1 ), [Ni 2 (tren) 2 (i-mnt) 2 ] ( 2 ), and [Ni 2 (i-mnt) 2 (opda) 2 ] n ( 3 ) have been synthesized in high yield in one step in water and structurally characterized by single crystal X-ray crystallography and spectroscopic techniques. X-ray diffraction studies disclose the diverse i-mnt −2 coordination to the Ni +2 center in the presence of active polyamine ligands, forming a slightly distorted octahedral geometry (NiN 4 S 2 ) in 1 , square planar (NiS 4 ) and distorted octahedral geometries (NiN 6 ) in the bimetallic co-crystallized aggregate of cationic [Ni(tren) 2 ] +2 and anionic [Ni(i-mnt) 2 ] −2 in 2 , and a one dimensional (1D) polymeric chain along the [100] axis in 3 , having consecutive square planar (NiS 4 ) and octahedral (NiN 6 ) coordination kernels. The N–H⋯O, N–H⋯S, N–H⋯N, N–H⋯S, N–H⋯N, and N–H⋯O type hydrogen bonds stabilize the supramolecular assemblies in 1 , 2 , and 3 respectively imparting interesting graph-set-motifs. The molecular Hirshfeld surface analyses (HS) and 2D fingerprint plots were utilized for decoding all types of non-covalent contacts in the crystal networks. Atomic HS analysis of the Ni +2 centers reveals significant Ni–N metal–ligand interactions compared to Ni–S interactions. We have also studied the unorthodox interactions observed in the solid state structures of 1–3 by QTAIM and NBO analyses. Moreover, all the complexes proved to be highly active water reduction co-catalysts (WRC) in a photo-catalytic hydrogen evolution process involving iridium photosensitizers, wherein 2 and 3 having a square planar arrangement around the nickel center(s) – were found to be the most active ones, achieving 1000 and 1119 turnover numbers (TON), respectively. 
    more » « less
  5. null (Ed.)
    Two NNN pincer complexes of Cu( ii ) and Ni( ii ) with BPI Me − [BPI Me − = 1,3-bis((6-methylpyridin-2-yl)imino)isoindolin-2-ide] have been prepared and characterized structurally, spectroscopically, and electrochemically. The single crystal structures of the two complexes confirmed their distorted trigonal bipyramidal geometry attained by three equatorial N-atoms from the ligand and two axially positioned water molecules to give [Cu(BPI Me )(H 2 O) 2 ]ClO 4 and [Ni(BPI Me )(H 2 O) 2 ]ClO 4 . Electrochemical studies of Cu( ii ) and Ni( ii ) complexes have been performed in acetonitrile to identify metal-based and ligand-based redox activity. When subjected to a saturated CO 2 atmosphere, both complexes displayed catalytic activity for the reduction of CO 2 with the Cu( ii ) complex displaying higher activity than the Ni( ii ) analogue. However, both complexes were shown to decompose into catalytically active heterogeneous materials on the electrode surface over extended reductive electrolysis periods. Surface analysis of these materials using energy dispersive spectroscopy as well as their physical appearance suggests the reductive deposition of copper and nickel metal on the electrode surface. Electrocatalysis and decomposition are proposed to be triggered by ligand reduction, where complex stability is believed to be tied to fluxional ligand coordination in the reduced state. 
    more » « less