skip to main content


Title: The impact of black hole scaling relation assumptions on the mass density of black holes
ABSTRACT

We examine the effect of supermassive black hole (SMBH) mass scaling relation choice on the inferred SMBH mass population since redshift z ∼ 3. To make robust predictions for the gravitational wave background (GWB), we must have a solid understanding of the underlying SMBH demographics. Using the SDSS and 3D-HST + CANDELS surveys for 0 < z < 3, we evaluate the inferred SMBH masses from two SMBH–galaxy scaling relations: MBH–Mbulge and MBH–σ. Our SMBH mass functions come directly from stellar mass measurements for MBH–Mbulge, and indirectly from stellar mass and galaxy radius measurements along with the galaxy mass fundamental plane for MBH–σ. We find that there is a substantial difference in predictions especially for z > 1, and this difference increases out to z = 3. In particular, we find that using velocity dispersion predicts a greater number of SMBHs with masses greater than 109 M⊙. The GWB that pulsar timing arrays find evidence for is higher in amplitude than expected from GWB predictions which rely on high-redshift extrapolations of local SMBH mass–galaxy scaling relations. The difference in SMBH demographics resulting from different scaling relations may be the origin for the mismatch between the signal amplitude and predictions. Generally, our results suggest that a deeper understanding of the potential redshift evolution of these relations is needed if we are to draw significant insight from their predictions at z > 1.

 
more » « less
Award ID(s):
2202388
NSF-PAR ID:
10435632
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
524
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 4403-4417
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    As the earliest relics of star formation episodes of the Universe, the most massive galaxies are the key to our understanding of the stellar population, cosmic structure, and supermassive black hole (SMBH) evolution. However, the details of their formation histories remain uncertain. We address these problems by planning a large survey sample of 101 ultramassive galaxies (z ≤ 0.3, |δ + 24°| < 45°, |b| > 8°), including 76 per cent ellipticals, 17 per cent lenticulars, and 7 per cent spirals brighter than MK ≤ −27 mag (stellar mass 2 × 1012 ≲ M⋆ ≲ 5 × 1012 M⊙) with ELT/HARMONI. Our sample comprises diverse galaxy environments ranging from isolated to dense-cluster galaxies. The primary goals of the project are to (1) explore the stellar dynamics inside galaxy nuclei and weigh SMBHs, (2) constrain the black hole scaling relations at the highest mass, and (3) probe the late-time assembly of these most massive galaxies through the stellar population and kinematical gradients. We describe the survey, discuss the distinct demographics and environmental properties of the sample, and simulate their HARMONI Iz-, Iz + J-, and H + K-band observations by combining the inferred stellar-mass models from Pan-STARRS observations, an assumed synthetic spectrum of stars, and SMBHs with masses estimated based on different black hole scaling relations. Our simulations produce excellent state-of-the-art integral field spectrography and stellar kinematics (ΔVrms ≲ 1.5 per cent) in a relatively short exposure time. We use these stellar kinematics in combination with the Jeans anisotropic model to reconstruct the SMBH mass and its error using a Markov chain Monte Carlo simulation. Thus, these simulations and modellings can be benchmarks to evaluate the instrument models and pipelines dedicated to HARMONI to exploit the unprecedented capabilities of ELT.

     
    more » « less
  2. ABSTRACT

    Early photometric results from JWST have revealed a number of galaxy candidates above redshift 10. The initial estimates of inferred stellar masses and the associated cosmic star formation rates are above most theoretical model predictions up to a factor of 20 in the most extreme cases, while this has been moderated after the recalibration of NIRCam and subsequent spectroscopic detections. Using these recent JWST observations, we use galaxy scaling relations from cosmological simulations to model the star formation history to very high redshifts, back to a starting halo mass of 107 M⊙, to infer the intrinsic properties of the JWST galaxies. Here, we explore the contribution of supermassive black holes, stellar binaries, and an excess of massive stars to the overall luminosity of high-redshift galaxies. Despite the addition of alternative components to the spectral energy distribution, we find stellar masses equal to or slightly higher than previous stellar mass estimates. Most galaxy spectra are dominated by the stellar component, and the exact choice for the stellar population model does not appear to make a major difference. We find that four of the 12 high-redshift galaxy candidates are best fit with a non-negligible active galactic nuclei component, but the evidence from the continuum alone is insufficient to confirm their existence. Upcoming spectroscopic observations of z > 10 galaxies will confirm the presence and nature of high-energy sources in the early Universe and will constrain their exact redshifts.

     
    more » « less
  3. ABSTRACT

    We present Trinity, a flexible empirical model that self-consistently infers the statistical connection between dark matter haloes, galaxies, and supermassive black holes (SMBHs). Trinity is constrained by galaxy observables from 0 < z < 10 [galaxies’ stellar mass functions, specific and cosmic star formation rates (SFRs), quenched fractions, and UV luminosity functions] and SMBH observables from 0 < z < 6.5 (quasar luminosity functions, quasar probability distribution functions, active black hole mass functions, local SMBH mass–bulge mass relations, and the observed SMBH mass distributions of high-redshift bright quasars). The model includes full treatment of observational systematics [e.g. active galactic nucleus (AGN) obscuration and errors in stellar masses]. From these data, Trinity infers the average SMBH mass, SMBH accretion rate, merger rate, and Eddington ratio distribution as functions of halo mass, galaxy stellar mass, and redshift. Key findings include: (1) the normalization and the slope of the SMBH mass–bulge mass relation increases mildly from z = 0 to z = 10; (2) The best-fitting AGN radiative+kinetic efficiency is ∼0.05–0.06, but can be in the range ∼0.035–0.07 with alternative input assumptions; (3) AGNs show downsizing, i.e. the Eddington ratios of more massive SMBHs start to decrease earlier than those of lower mass objects; (4) The average ratio between average SMBH accretion rate and SFR is ∼10−3 for low-mass galaxies, which are primarily star-forming. This ratio increases to ∼10−1 for the most massive haloes below z ∼ 1, where star formation is quenched but SMBHs continue to accrete.

     
    more » « less
  4. Abstract

    The nanohertz gravitational wave background (GWB) is believed to be dominated by GW emission from supermassive black hole binaries (SMBHBs). Observations of several dual-active galactic nuclei (AGN) strongly suggest a link between AGN and SMBHBs, given that these dual-AGN systems will eventually form bound binary pairs. Here we develop an exploratory SMBHB population model based on empirically constrained quasar populations, allowing us to decompose the GWB amplitude into an underlying distribution of SMBH masses, SMBHB number density, and volume enclosing the GWB. Our approach also allows us to self-consistently predict the number of local SMBHB systems from the GWB amplitude. Interestingly, we find the local number density of SMBHBs implied by the common-process signal in the NANOGrav 12.5-yr data set to be roughly five times larger than previously predicted by other models. We also find that at most ∼25% of SMBHBs can be associated with quasars. Furthermore, our quasar-based approach predicts ≳95% of the GWB signal comes fromz≲ 2.5, and that SMBHBs contributing to the GWB have masses ≳108M. We also explore how different empirical galaxy–black hole scaling relations affect the local number density of GW sources, and find that relations predicting more massive black holes decrease the local number density of SMBHBs. Overall, our results point to the important role that a measurement of the GWB will play in directly constraining the cosmic population of SMBHBs, as well as their connections to quasars and galaxy mergers.

     
    more » « less
  5. ABSTRACT

    We examine massive black hole (MBH) mergers and their associated gravitational wave signals from the large-volume cosmological simulation Astrid . Astrid includes galaxy formation and black hole models recently updated with an MBH seed population between 3 × 104h−1M⊙ and 3 × 105h−1M⊙ and a sub-grid dynamical friction (DF) model to follow the MBH dynamics down to 1.5 ckpc h−1. We calculate the initial eccentricities of MBH orbits directly from the simulation at kpc-scales, and find orbital eccentricities above 0.7 for most MBH pairs before the numerical merger. After approximating unresolved evolution on scales below ${\sim 200\, \text{pc}}$, we find that the in-simulation DF on large scales accounts for more than half of the total orbital decay time ($\sim 500\, \text{Myr}$) due to DF. The binary hardening time is an order of magnitude longer than the DF time, especially for the seed-mass binaries (MBH < 2Mseed). As a result, only $\lesssim 20{{\rm per \,cent}}$ of seed MBH pairs merge at z > 3 after considering both unresolved DF evolution and binary hardening. These z > 3 seed-mass mergers are hosted in a biased population of galaxies with the highest stellar masses of $\gt 10^9\, {\rm M}_\odot$. With the higher initial eccentricity prediction from Astrid , we estimate an expected merger rate of 0.3−0.7 per year from the z > 3 MBH population. This is a factor of ∼7 higher than the prediction using the circular orbit assumption. The Laser Interferometer Space Antenna events are expected at a similar rate, and comprise $\gtrsim 60\,{\rm{per\,cent}}$ seed-seed mergers, $\sim 30\,{\rm{per\,cent}}$ involving only one seed-mass MBH, and $\sim 10\,{\rm{per\,cent}}$ mergers of non-seed MBHs.

     
    more » « less