skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Genomics of cold adaptations in the Antarctic notothenioid fish radiation
Abstract Numerous novel adaptations characterise the radiation of notothenioids, the dominant fish group in the freezing seas of the Southern Ocean. To improve understanding of the evolution of this iconic fish group, here we generate and analyse new genome assemblies for 24 species covering all major subgroups of the radiation, including five long-read assemblies. We present a new estimate for the onset of the radiation at 10.7 million years ago, based on a time-calibrated phylogeny derived from genome-wide sequence data. We identify a two-fold variation in genome size, driven by expansion of multiple transposable element families, and use the long-read data to reconstruct two evolutionarily important, highly repetitive gene family loci. First, we present the most complete reconstruction to date of the antifreeze glycoprotein gene family, whose emergence enabled survival in sub-zero temperatures, showing the expansion of the antifreeze gene locus from the ancestral to the derived state. Second, we trace the loss of haemoglobin genes in icefishes, the only vertebrates lacking functional haemoglobins, through complete reconstruction of the two haemoglobin gene clusters across notothenioid families. Both the haemoglobin and antifreeze genomic loci are characterised by multiple transposon expansions that may have driven the evolutionary history of these genes.  more » « less
Award ID(s):
1955368 2232891
PAR ID:
10435748
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Long‐read sequencing is driving a new reality for genome science in which highly contiguous assemblies can be produced efficiently with modest resources. Genome assemblies from long‐read sequences are particularly exciting for understanding the evolution of complex genomic regions that are often difficult to assemble. In this study, we utilized long‐read sequencing data to generate a high‐quality genome assembly for an Antarctic eelpout,Ophthalmolycus amberensis, the first for the globally distributed family Zoarcidae. We used this assembly to understand howO. amberensishas adapted to the harsh Southern Ocean and compared it to another group of Antarctic fishes: the notothenioids. We showed that selection has largely acted on different targets in eelpouts relative to notothenioids. However, we did find some overlap; in both groups, genes involved in membrane structure, thermal tolerance and vision have evidence of positive selection. We found evidence for historical shifts of transposable element activity inO. amberensisand other polar fishes, perhaps reflecting a response to environmental change. We were specifically interested in the evolution of two complex genomic loci known to underlie key adaptations to polar seas: haemoglobin and antifreeze proteins (AFPs). We observed unique evolution of the haemoglobin MN cluster in eelpouts and related fishes in the suborder Zoarcoidei relative to other Perciformes. For AFPs, we identified the first species in the suborder with no evidence ofafpIIIsequences (Cebidichthys violaceus) in the genomic region where they are found in all other Zoarcoidei, potentially reflecting a lineage‐specific loss of this cluster. Beyond polar fishes, our results highlight the power of long‐read sequencing to understand genome evolution. 
    more » « less
  2. Hodgins, Kathryn (Ed.)
    Abstract Antifreeze proteins (AFPs) have enabled teleost fishes to repeatedly colonize polar seas. Four AFP types have convergently evolved in several fish lineages. AFPs inhibit ice crystal growth and lower tissue freezing point. In lineages with AFPs, species inhabiting colder environments may possess more AFP copies. Elucidating how differences in AFP copy number evolve is challenging due to the genes’ tandem array structure and consequently poor resolution of these repetitive regions. Here, we explore the evolution of type III AFPs (AFP III) in the globally distributed suborder Zoarcoidei, leveraging six new long-read genome assemblies. Zoarcoidei has fewer genomic resources relative to other polar fish clades while it is one of the few groups of fishes adapted to both the Arctic and Southern Oceans. Combining these new assemblies with additional long-read genomes available for Zoarcoidei, we conducted a comprehensive phylogenetic test of AFP III evolution and modeled the effects of thermal habitat and depth on AFP III gene family evolution. We confirm a single origin of AFP III via neofunctionalization of the enzyme sialic acid synthase B. We also show that AFP copy number increased under low temperature but decreased with depth, potentially because pressure lowers freezing point. Associations between the environment and AFP III copy number were driven by duplications of paralogs that were translocated out of the ancestral locus at which AFP III arose. Our results reveal novel environmental effects on AFP evolution and demonstrate the value of high-quality genomic resources for studying how structural genomic variation shapes convergent adaptation. 
    more » « less
  3. Gossmann, Toni (Ed.)
    Abstract Spiders (Araneae) have a diverse spectrum of morphologies, behaviors, and physiologies. Attempts to understand the genomic-basis of this diversity are often hindered by their large, heterozygous, and AT-rich genomes with high repeat content resulting in highly fragmented, poor-quality assemblies. As a result, the key attributes of spider genomes, including gene family evolution, repeat content, and gene function, remain poorly understood. Here, we used Illumina and Dovetail Chicago technologies to sequence the genome of the long-jawed spider Tetragnatha kauaiensis, producing an assembly distributed along 3,925 scaffolds with an N50 of ∼2 Mb. Using comparative genomics tools, we explore genome evolution across available spider assemblies. Our findings suggest that the previously reported and vast genome size variation in spiders is linked to the different representation and number of transposable elements. Using statistical tools to uncover gene-family level evolution, we find expansions associated with the sensory perception of taste, immunity, and metabolism. In addition, we report strikingly different histories of chemosensory, venom, and silk gene families, with the first two evolving much earlier, affected by the ancestral whole genome duplication in Arachnopulmonata (∼450 Ma) and exhibiting higher numbers. Together, our findings reveal that spider genomes are highly variable and that genomic novelty may have been driven by the burst of an ancient whole genome duplication, followed by gene family and transposable element expansion. 
    more » « less
  4. Abstract Genomic clusters of immune genes, including those encoding nucleotide-binding leucine-rich repeat (NLR) proteins, are a model for exploring the dynamics of genomic regions in flux. Rapid sequence evolution of immune genes, including NLRs, and variation in their gene content, may enable long-lived plants, which lack adaptive immune systems, to keep pace with the fast evolution of pathogens. To explore the patterns and processes shaping the evolution of NLR gene content in a genus of long-lived tree species, we unified the annotation of NLR genes across 11 accessions (or 15 haplotypes) from the genusCitrusand its relatives, including three new diploid genome assemblies. A majority of NLRs were arranged in genomic clusters composed of paralogous genes, typically from a single gene family. Even larger clusters, with 10 or more NLRs, were limited to genes derived from one or few gene families. These patterns suggested that genomic clustering of NLRs arose through local expansion of phylogenetically related NLRs, but the mechanistic processes driving these patterns are not clear. Local gene duplication can be mediated by multiple processes, including transposon-mediated gene capture and subsequent proliferation, and non-allelic repair of double stranded breaks, including unequal recombination. Examples of retrotransposon-mediated duplication of NLRs were identified, but these were not sufficient to explain massive regional expansions. Signatures of unequal recombination are challenging to identify. Focusing on recent lineage-specific sequence duplications, at least one case of unequal recombination was identified, supporting a role for unequal recombination in shaping genomic variation in these regions. 
    more » « less
  5. null (Ed.)
    Abstract Setaria viridis (green foxtail) is an important model system for improving cereal crops due to its diploid genome, ease of cultivation, and use of C4 photosynthesis. The S. viridis accession ME034V is exceptionally transformable, but the lack of a sequenced genome for this accession has limited its utility. We present a 397 Mb highly contiguous de novo assembly of ME034V using ultra-long nanopore sequencing technology (read N50 = 41kb). We estimate that this genome is largely complete based on our updated k-mer based genome size estimate of 401 Mb for S. viridis. Genome annotation identified 37,908 protein-coding genes and >300k repetitive elements comprising 46% of the genome. We compared the ME034V assembly with two other previously sequenced Setaria genomes as well as to a diversity panel of 235 S. viridis accessions. We found the genome assemblies to be largely syntenic, but numerous unique polymorphic structural variants were discovered. Several ME034V deletions may be associated with recent retrotransposition of copia and gypsy LTR repeat families, as evidenced by their low genotype frequencies in the sampled population. Lastly, we performed a phylogenomic analysis to identify gene families that have expanded in Setaria, including those involved in specialized metabolism and plant defense response. The high continuity of the ME034V genome assembly validates the utility of ultra-long DNA sequencing to improve genetic resources for emerging model organisms. Structural variation present in Setaria illustrates the importance of obtaining the proper genome reference for genetic experiments. Thus, we anticipate that the ME034V genome will be of significant utility for the Setaria research community. 
    more » « less