skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Developing Self-evolving Deepfake Detectors Against AI Attacks
As deep-learning based image and video manipulation technology advances, the future of truth and information looks bleak. In particular, Deepfakes, wherein a person’s face can be transferred onto the face of someone else, pose a serious threat for potential spread of convincing misinformation that is drastic and ubiquitous enough to have catastrophic real-world consequences. To prevent this, an effective detection tool for manipulated media is needed. However, the detector cannot just be good, it has to evolve with the technology to keep pace with or even outpace the enemy. At the same time, it must defend against different attack types to which deep learning systems are vulnerable. To that end, in this paper, we review various methods of both attack and defense on AI systems, as well as modes of evolution for such a system. Then, we put forward a potential system that combines the latest technologies in multiple areas as well as several novel ideas to create a detection algorithm that is robust against many attacks and can learn over time with unprecedented effectiveness and efficiency.  more » « less
Award ID(s):
1946619
PAR ID:
10435841
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA)
Page Range / eLocation ID:
47 to 54
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Controllers of security-critical cyber-physical systems, like the power grid, are a very important class of computer systems. Attacks against the control code of a power-grid system, especially zero-day attacks, can be catastrophic. Earlier detection of the anomalies can prevent further damage. However, detecting zero-day attacks is extremely challenging because they have no known code and have unknown behavior. Furthermore, if data collected from the controller is transferred to a server through networks for analysis and detection of anomalous behavior, this creates a very large attack surface and also delays detection. In order to address this problem, we propose Reconstruction Error Distribution (RED) of Hardware Performance Counters (HPCs), and a data-driven defense system based on it. Specifically, we first train a temporal deep learning model, using only normal HPC readings from legitimate processes that run daily in these power-grid systems, to model the normal behavior of the power-grid controller. Then, we run this model using real-time data from commonly available HPCs. We use the proposed RED to enhance the temporal deep learning detection of anomalous behavior, by estimating distribution deviations from the normal behavior with an effective statistical test. Experimental results on a real power-grid controller show that we can detect anomalous behavior with high accuracy (>99.9%), nearly zero false positives and short (<360ms) latency. 
    more » « less
  2. Recent work in adversarial machine learning started to focus on the visual perception in autonomous driving and studied Adversarial Examples (AEs) for object detection models. However, in such visual perception pipeline the detected objects must also be tracked, in a process called Multiple Object Tracking (MOT), to build the moving trajectories of surrounding obstacles. Since MOT is designed to be robust against errors in object detection, it poses a general challenge to existing attack techniques that blindly target objection detection: we find that a success rate of over 98% is needed for them to actually affect the tracking results, a requirement that no existing attack technique can satisfy. In this paper, we are the first to study adversarial machine learning attacks against the complete visual perception pipeline in autonomous driving, and discover a novel attack technique, tracker hijacking, that can effectively fool MOT using AEs on object detection. Using our technique, successful AEs on as few as one single frame can move an existing object in to or out of the headway of an autonomous vehicle to cause potential safety hazards. We perform evaluation using the Berkeley Deep Drive dataset and find that on average when 3 frames are attacked, our attack can have a nearly 100% success rate while attacks that blindly target object detection only have up to 25%. 
    more » « less
  3. Liveness Detection (LivDet)-Face is an international competition series open to academia and industry. The competition’s objective is to assess and report state-of-the-art in liveness / Presentation Attack Detection (PAD) for face recognition. Impersonation and presentation of false samples to the sensors can be classified as presentation attacks and the ability for the sensors to detect such attempts is known as PAD. LivDet-Face 2021 * will be the first edition of the face liveness competition. This competition serves as an important benchmark in face presentation attack detection, offering (a) an independent assessment of the current state of the art in face PAD, and (b) a common evaluation protocol, availability of Presentation Attack Instruments (PAI) and live face image dataset through the Biometric Evaluation and Testing (BEAT) platform. The competition can be easily followed by researchers after it is closed, in a platform in which participants can compare their solutions against the LivDet-Face winners. 
    more » « less
  4. The state-of-the-art performance of deep learning algorithms has led to a considerable increase in the utilization of machine learning in security-sensitive and critical applications. However, it has recently been shown that a small and carefully crafted perturbation in the input space can completely fool a deep model. In this study, we explore the extent to which face recognition systems are vulnerable to geometrically-perturbed adversarial faces. We propose a fast landmark manipulation method for generating adversarial faces, which is approximately 200 times faster than the previous geometric attacks and obtains 99.86% success rate on the state-of-the-art face recognition models. To further force the generated samples to be natural, we introduce a second attack constrained on the semantic structure of the face which has the half speed of the first attack with the success rate of 99.96%. Both attacks are extremely robust against the state-of-the-art defense methods with the success rate of equal or greater than 53.59%. Code is available at https://github.com/alldbi/FLM. 
    more » « less
  5. Deep learning models have been used in creating various effective image classification applications. However, they are vulnerable to adversarial attacks that seek to misguide the models into predicting incorrect classes. Our study of major adversarial attack models shows that they all specifically target and exploit the neural networking structures in their designs. This understanding led us to develop a hypothesis that most classical machine learning models, such as random forest (RF), are immune to adversarial attack models because they do not rely on neural network design at all. Our experimental study of classical machine learning models against popular adversarial attacks supports this hypothesis. Based on this hypothesis, we propose a new adversarial-aware deep learning system by using a classical machine learning model as the secondary verification system to complement the primary deep learning model in image classification. Although the secondary classical machine learning model has less accurate output, it is only used for verification purposes, which does not impact the output accuracy of the primary deep learning model, and, at the same time, can effectively detect an adversarial attack when a clear mismatch occurs. Our experiments based on the CIFAR-100 dataset show that our proposed approach outperforms current state-of-the-art adversarial defense systems. 
    more » « less