This paper presents a mid-air thermal interface enabled by a piezoelectric micromachined ultrasonic transducer (pMUT) array. The two-stage thermal actuating process consists of an ultrasound-transmission process via a pMUT array and an ultrasound-absorption process via porous fabric. The pMUT design employs sputtered potassium sodium niobate (K,Na)NbO3 (KNN) thin film with a high piezoelectric coefficient (d31 ~ 8-10 C/m2) as piezoelectric layer for enhanced acoustic pressure. Testing results show that the prototype pMUT array has a resonant frequency around 97.6 kHz, and it can generate 1970 Pa of focal pressure at 15 mm away under the 10.6 Vp-p excitation. As a result, fabric temperature in the central focal area can rise from 24.2β to 31.7β after 320 seconds with an average temperature variation rate of 0.023β/s. Moreover, thermal sensations on the human palms have been realized by the heat conduction through the fabric-skin contact. As such, this work highlights the promising application of pMUT array with high acoustic pressure for human-machine interface, particularly mid-air thermal display.
more »
« less
HIGH-SPL PMUT ARRAY FOR MID-AIR HAPTIC INTERFACE
This paper presents a mid-air haptic interface device enabled by a piezoelectric micromachined ultrasonic transducer (pMUT) array achieving an unprecedentedly high transmission pressure of 2900 Pa at a 15 mm distance for the first time. The structure is based on sputtered potassium sodium niobate (K,Na)NbO3 (KNN) thin film with a high piezoelectric coefficient (ππ31 ~ 8-10 C/m2). A prototype KNN pMUT array composed of 15Γ15 dual-electrode circular-shape diaphragms exhibits a resonant frequency around 92.4 kHz. Testing results show a transmitting sensitivity of 120.8 Pa/cm2 per volt under only 12 Vp-p excitation at the natural focal point of 15 mm away, which is at least 3 times that of previously reported AlN pMUTs at a similar frequency. Furthermore, an instant non-contact haptic stimulation of wind-like sensation on human palms has been realized. As such, this work sheds light on a new class of pMUT array with high acoustic output pressure for human-machine interface applications, such as consumer electronics and AR/VR systems.
more »
« less
- Award ID(s):
- 2128311
- PAR ID:
- 10435874
- Date Published:
- Journal Name:
- 22th International Conference on Solid-State Sensors, Actuators and Microsystems-Transducers 2023
- Page Range / eLocation ID:
- 124-127
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This work reports an engineered platform for the non-contact haptic stimulation on human skins by means of an array of piezoelectric micromachined ultrasonic transducer (pMUT) via the beamforming scheme. Compared to the state-of-art reports, three distinctive achievements have been demonstrated: (1) individual single pMUT unit based on lithium niobate (LN) with measured high SPL (sound pressure level) of 133 dB at 2 mm away; (2) a beamforming scheme simulated and experimentally proved to generate ~2.3x higher pressure near the focal point; and (3) the combination of auto-positioning and haptic stimulations on volunteers with the smallest reported physical device size to achieve haptic sensations. As such, this work could have practical applications in the broad areas to stimulate haptic sensations, such as AR (Augmented Reality), VR (Virtual Reality), and robotics.more » « less
-
This work reports a platform based on ultrasound for mid-air particle manipulations using a 2Γ2 piezoelectric micromachined ultrasonic transducer (pMUT) array. Three achievements have been demonstrated as compared to the state-of-art: (1) high SPL (sound pressure level) of 120 dB at a distance 12 mm away by an individual lithium-niobate pMUT; (2) a numerically simulated and experimentally demonstrated 2D focal point control scheme by adjusting the phase-delay of individual pMUTs; and (3) the experimental demonstration of moving a 0.7 mg foam plastic particle of 12 mm away in the mid-air by ~1.8 mm. As such, this work shows the potential for practical applications in the broad fields of non-contact actuations, including particle manipulations in microfluidics, touchless haptic sensations, β¦ etc.more » « less
-
Chan, Jenna F; Rajaraman, Swaminathan (Ed.)We have successfully demonstrated a novel, passive layer-free, curved piezoelectric micromachined ultrasound transducer (PMUT) array, using a sacrificial curved glass template and 30% scandium-doped aluminum nitride (Sc-AlN) as the active layer. The PMUTs were fabricated using a curved, suspended borosilicate glass template created via a chip-scale glass-blowing technique, onto which electrodes and the piezoelectric layer were deposited. The glass layer was thereafter selectively removed. We characterized the performance of a 13 Γ 13 curved PMUT (cPMUT) array using an electrical impedance analyzer, a Laser Doppler Vibrometer (LDV), and hydrophone pressure measurements. Our results reveal a device resonance frequency of approximately 1.8 MHz in air, with LDV analysis indicating a significantly enhanced low-frequency response of 1.68 nm/Vβa fivefold improvement over conventional curved PMUTs with a passive layer. Additionally, acoustic characterization in water showed that this array generates an acoustic pressure of approximately 80 kPa at a 4.4 mm focal distance, with a beam width of 5 mm, and achieves a spatial peak pulse average intensity (ISPPA) of 216 mW/cm2 when driven off-resonance. Furthermore, we demonstrate 20-degree steering capability using our data acquisition system. These advancements highlight significant potential for enhancing the precision and efficacy of medical imaging and therapeutic applications, particularly in ultrasonic diagnostics and treatments.more » « less
-
Abstract In recent years, there has been an increased interest in continuous monitoring of patients and their Implanted Medical Devices (IMDs) with different wireless technologies such as ultrasounds. This paper demonstrates a high data-rate intrabody communication link based on Lithium Niobate (LN) Piezoelectric Micromachined Ultrasonic Transducers (pMUTs). The properties of the LN allow to activate multiple flexural mode of vibration with only top electrodes. When operating in materials like the human tissue, these modes are merging and forming a large communication bandwidth. Such large bandwidth, up to 400βkHz, allows for a high-data rate communication link for IMDs. Here we demonstrate a full communication link in a tissue phantom with a fabricated LN pMUT array of 225 elements with an area of just 3 by 3βmm square, showing data-rates up to 800βkbits/s, starting from 3.5βcm and going up to 13.5βcm, which covers the vast majority of IMDs.more » « less
An official website of the United States government

