skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Improving PMUT Receive Sensitivity via DC Bias and Piezoelectric Composition
The receive sensitivity of lead zirconate titanate (PZT) piezoelectric micromachined ultrasound transducers (PMUTs) was improved by applying a DC bias during operation. The PMUT receive sensitivity is governed by the voltage piezoelectric coefficient, h31,f. With applied DC biases (up to 15 V) on a 2 μm PbZr0.52Ti0.48O3 film, e31,f increased 1.6 times, permittivity decreased by a factor of 0.6, and the voltage coefficient increased by ~2.5 times. For released PMUT devices, the ultrasound receive sensitivity improved by 2.5 times and the photoacoustic signal improved 1.9 times with 15 V applied DC bias. B-mode photoacoustic imaging experiments showed that with DC bias, the PMUT received clearer photoacoustic signals from pencil leads at 4.3 cm, compared to 3.7 cm without DC bias.  more » « less
Award ID(s):
1420620
PAR ID:
10415941
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Sensors
Volume:
22
Issue:
15
ISSN:
1424-8220
Page Range / eLocation ID:
5614
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a mid-air thermal interface enabled by a piezoelectric micromachined ultrasonic transducer (pMUT) array. The two-stage thermal actuating process consists of an ultrasound-transmission process via a pMUT array and an ultrasound-absorption process via porous fabric. The pMUT design employs sputtered potassium sodium niobate (K,Na)NbO3 (KNN) thin film with a high piezoelectric coefficient (d31 ~ 8-10 C/m2) as piezoelectric layer for enhanced acoustic pressure. Testing results show that the prototype pMUT array has a resonant frequency around 97.6 kHz, and it can generate 1970 Pa of focal pressure at 15 mm away under the 10.6 Vp-p excitation. As a result, fabric temperature in the central focal area can rise from 24.2℃ to 31.7℃ after 320 seconds with an average temperature variation rate of 0.023℃/s. Moreover, thermal sensations on the human palms have been realized by the heat conduction through the fabric-skin contact. As such, this work highlights the promising application of pMUT array with high acoustic pressure for human-machine interface, particularly mid-air thermal display. 
    more » « less
  2. This paper presents a mid-air haptic interface device enabled by a piezoelectric micromachined ultrasonic transducer (pMUT) array achieving an unprecedentedly high transmission pressure of 2900 Pa at a 15 mm distance for the first time. The structure is based on sputtered potassium sodium niobate (K,Na)NbO3 (KNN) thin film with a high piezoelectric coefficient (𝑒𝑒31 ~ 8-10 C/m2). A prototype KNN pMUT array composed of 15×15 dual-electrode circular-shape diaphragms exhibits a resonant frequency around 92.4 kHz. Testing results show a transmitting sensitivity of 120.8 Pa/cm2 per volt under only 12 Vp-p excitation at the natural focal point of 15 mm away, which is at least 3 times that of previously reported AlN pMUTs at a similar frequency. Furthermore, an instant non-contact haptic stimulation of wind-like sensation on human palms has been realized. As such, this work sheds light on a new class of pMUT array with high acoustic output pressure for human-machine interface applications, such as consumer electronics and AR/VR systems. 
    more » « less
  3. Abstract

    This work presents air-coupled piezoelectric micromachined ultrasonic transducers (pMUTs) with high sound pressure level (SPL) under low-driving voltages by utilizing sputtered potassium sodium niobate K0.34Na0.66NbO3(KNN) films. A prototype single KNN pMUT has been tested to show a resonant frequency at 106.3 kHz under 4 Vp-pwith outstanding characteristics: (1) a large vibration amplitude of 3.74 μm/V, and (2) a high acoustic root mean square (RMS) sound pressure level of 105.5 dB/V at 10 cm, which is 5–10 times higher than those of AlN-based pMUTs at a similar frequency. There are various potential sensing and actuating applications, such as fingerprint sensing, touch point, and gesture recognition. In this work, we present demonstrations in three fields: haptics, loudspeakers, and rangefinders. For haptics, an array of 15 × 15 KNN pMUTs is used as a non-contact actuator to provide a focal pressure of around 160.3 dB RMS SPL at a distance of 15 mm. This represents the highest output pressure achieved by an airborne pMUT for haptic sensation on human palms. When used as a loudspeaker, a single pMUT element with a resonant frequency close to the audible range at 22.8 kHz is characterized. It is shown to be able to generate a uniform acoustic output with an amplitude modulation scheme. In the rangefinder application, pulse-echo measurements using a single pMUT element demonstrate good transceiving results, capable of detecting objects up to 2.82 m away. As such, this new class of high-SPL and low-driving-voltage pMUTs could be further extended to other applications requiring high acoustic pressure and a small form factor.

     
    more » « less
  4. The temperature-dependent behavior of on/off ratio and reverse recovery time in vertical heterojunction p-NiO/β n-Ga2O/n+ Ga2O3 rectifiers was investigated over the temperature range of 25–300 °C. The device characteristics in forward bias showed evidence of multiple current transport mechanisms and were found to be dependent on the applied bias voltages and temperatures. The on–off ratio decreased from 3 × 106 at 25 °C to 2.5 × 104 at 300 °C for switching to 100 V reverse bias. For 200 μm diameter rectifiers, the reverse recovery time of ∼21 ns was independent of temperature, with the Irr monotonically increasing from 15.1 mA at 25 °C to 25.6 mA at 250 °C and dropping at 300 °C. The dI/dt increased from 4.2 to 4.6 A/μs over this temperature range. The turn-on voltage decreased from 2.9 V at 25 °C to 1.7 V at 300 °C. The temperature coefficient of breakdown voltage was negative and does not support the presence of avalanche breakdown in NiO/β-Ga2O3 rectifiers. The energy loss during switching from 100 V was in the range 23–31 μJ over the temperature range investigated.

     
    more » « less
  5. This paper reports on a novel transducer for wireless biochemical sensing. The bilayer transducer consists of a fractal piezoelectric membrane and pH-sensitive chemo-mechanical hydrogel, which overcomes many shortcomings in the chemical and biochemical sensing. The fractal design on the piezoelectric membrane enhances frequency response and linearity by employing periodically repeated pore architecture. As a basis of the pore, a Hilbert space-filling curve with modifications is used. On the surface of the fractal piezoelectric membrane, the hydrogel is laminated. When the bilayer transducer is introduced to a pH environment (e.g., pH = 4, 8, and 12), the hydrogel swells (or shrinks) and induces the curling of the bilayer transducer (10.47°/pH). The curvature then exhibits various ultrasound responses when the bilayer transducer was excited. The measured voltage outputs using an ultrasonic receiver were 0.393, 0.341, 0.250 mV/cm 2 when curvature angles were 30°, 60°, and 120°, respectively. Overall pH sensitivity was 0.017 mV/cm 2 /pH. Ultimately, the biochemical sensing principle using a novel bilayer ultrasound transducer suggests a simple, low-cost, battery-less, and long-range wireless readout system as compared to traditional biochemical sensing. 
    more » « less