This paper presents a mid-air thermal interface enabled by a piezoelectric micromachined ultrasonic transducer (pMUT) array. The two-stage thermal actuating process consists of an ultrasound-transmission process via a pMUT array and an ultrasound-absorption process via porous fabric. The pMUT design employs sputtered potassium sodium niobate (K,Na)NbO3 (KNN) thin film with a high piezoelectric coefficient (d31 ~ 8-10 C/m2) as piezoelectric layer for enhanced acoustic pressure. Testing results show that the prototype pMUT array has a resonant frequency around 97.6 kHz, and it can generate 1970 Pa of focal pressure at 15 mm away under the 10.6 Vp-p excitation. As a result, fabric temperature in the central focal area can rise from 24.2℃ to 31.7℃ after 320 seconds with an average temperature variation rate of 0.023℃/s. Moreover, thermal sensations on the human palms have been realized by the heat conduction through the fabric-skin contact. As such, this work highlights the promising application of pMUT array with high acoustic pressure for human-machine interface, particularly mid-air thermal display. 
                        more » 
                        « less   
                    
                            
                            Improving PMUT Receive Sensitivity via DC Bias and Piezoelectric Composition
                        
                    
    
            The receive sensitivity of lead zirconate titanate (PZT) piezoelectric micromachined ultrasound transducers (PMUTs) was improved by applying a DC bias during operation. The PMUT receive sensitivity is governed by the voltage piezoelectric coefficient, h31,f. With applied DC biases (up to 15 V) on a 2 μm PbZr0.52Ti0.48O3 film, e31,f increased 1.6 times, permittivity decreased by a factor of 0.6, and the voltage coefficient increased by ~2.5 times. For released PMUT devices, the ultrasound receive sensitivity improved by 2.5 times and the photoacoustic signal improved 1.9 times with 15 V applied DC bias. B-mode photoacoustic imaging experiments showed that with DC bias, the PMUT received clearer photoacoustic signals from pencil leads at 4.3 cm, compared to 3.7 cm without DC bias. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1420620
- PAR ID:
- 10415941
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 22
- Issue:
- 15
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 5614
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This paper presents a mid-air haptic interface device enabled by a piezoelectric micromachined ultrasonic transducer (pMUT) array achieving an unprecedentedly high transmission pressure of 2900 Pa at a 15 mm distance for the first time. The structure is based on sputtered potassium sodium niobate (K,Na)NbO3 (KNN) thin film with a high piezoelectric coefficient (𝑒𝑒31 ~ 8-10 C/m2). A prototype KNN pMUT array composed of 15×15 dual-electrode circular-shape diaphragms exhibits a resonant frequency around 92.4 kHz. Testing results show a transmitting sensitivity of 120.8 Pa/cm2 per volt under only 12 Vp-p excitation at the natural focal point of 15 mm away, which is at least 3 times that of previously reported AlN pMUTs at a similar frequency. Furthermore, an instant non-contact haptic stimulation of wind-like sensation on human palms has been realized. As such, this work sheds light on a new class of pMUT array with high acoustic output pressure for human-machine interface applications, such as consumer electronics and AR/VR systems.more » « less
- 
            Langfelder, Giacomo (Ed.)In this letter, we report on a high-sensitivity whispering gallery mode (WGM) resonator-based air-coupled ultrasound sensor capable of detecting minute pressure variations across an ultrasound frequency spectrum of 0.6–3.5 MHz. The sensor comprises a microspherical glass shell of approximately 450 μm in radius and nonuniform shell thickness of 7–15 μm, which is optically coupled to a tunable laser for resonance excitation. The setup allows for the precise measurement of acoustic signals, benefiting from the high optical Q-factor of ∼2 million of the blown glass microspherical shells. A noise equivalent pressure as low as 40 μPa/ √Hz was obtained at 1.72-MHz ultrasound frequency. A very good correspondence between the simulated axisymmetric resonance frequencies measured using the WGM resonator and a 3D finite-element analysis model in COMSOL was established. The sensor showed an expected linear dependence on the drive voltage of the ultrasound transducer. The distortion of the microspherical shell under acoustic pressure was also independently confirmed using a laser Doppler vibrometer. The sensor’s capability to handle high-frequency ultrasonic waves with significantly better signal-to-noise ratio than conventional piezoelectric- or microphone-based systems is demonstrated, highlighting its suitability for advanced photoacoustic applications.more » « less
- 
            The temperature-dependent behavior of on/off ratio and reverse recovery time in vertical heterojunction p-NiO/β n-Ga2O/n+ Ga2O3 rectifiers was investigated over the temperature range of 25–300 °C. The device characteristics in forward bias showed evidence of multiple current transport mechanisms and were found to be dependent on the applied bias voltages and temperatures. The on–off ratio decreased from 3 × 106 at 25 °C to 2.5 × 104 at 300 °C for switching to 100 V reverse bias. For 200 μm diameter rectifiers, the reverse recovery time of ∼21 ns was independent of temperature, with the Irr monotonically increasing from 15.1 mA at 25 °C to 25.6 mA at 250 °C and dropping at 300 °C. The dI/dt increased from 4.2 to 4.6 A/μs over this temperature range. The turn-on voltage decreased from 2.9 V at 25 °C to 1.7 V at 300 °C. The temperature coefficient of breakdown voltage was negative and does not support the presence of avalanche breakdown in NiO/β-Ga2O3 rectifiers. The energy loss during switching from 100 V was in the range 23–31 μJ over the temperature range investigated.more » « less
- 
            This study investigates the electrical and structural properties of metal–oxide–semiconductor capacitors (MOSCAPs) with in situ metal-organic chemical vapor deposition-grown Al2O3 dielectrics deposited at varying temperatures on (010) β-Ga2O3 and β-(AlxGa1−x)2O3 films with different Al compositions. The Al2O3/β-Ga2O3 MOSCAPs exhibited a strong dependence of electrical properties on Al2O3 deposition temperature. At 900 °C, reduced voltage hysteresis (∼0.3 V) with improved reverse breakdown voltage (74.5 V) was observed, corresponding to breakdown fields of 5.01 MV/cm in Al2O3 and 4.11 MV/cm in β-Ga2O3 under reverse bias. In contrast, 650 °C deposition temperature resulted in higher voltage hysteresis (∼3.44 V) and lower reverse breakdown voltage (38.8 V) with breakdown fields of 3.69 and 2.87 MV/cm in Al2O3 and β-Ga2O3, respectively, but exhibited impressive forward breakdown field, increasing from 5.62 MV/cm at 900 °C to 7.25 MV/cm at 650 °C. High-resolution scanning transmission electron microscopy (STEM) revealed improved crystallinity and sharper interfaces at 900 °C, contributing to enhanced reverse breakdown performance. For Al2O3/β-(AlxGa1−x)2O3 MOSCAPs, increasing Al composition (x) from 5.5% to 9.2% reduced net carrier concentration and improved reverse breakdown field contributions from 2.55 to 2.90 MV/cm in β-(AlxGa1−x)2O3 and 2.41 to 3.13 MV/cm in Al2O3. The electric field in Al2O3 dielectric under forward bias breakdown also improved from 5.0 to 5.4 MV/cm as Al composition increased from 5.5% to 9.2%. The STEM imaging confirmed the compositional homogeneity and excellent stoichiometry of both Al2O3 and β-(AlxGa1−x)2O3 layers. These findings demonstrate the robust electrical performance, high breakdown fields, and excellent structural quality of Al2O3/β-Ga2O3 and Al2O3/β-(AlxGa1−x)2O3 MOSCAPs, highlighting their potential for high-power electronic applications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    