skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-frequency surface-micromachined optical ultrasound transducer array for 3D micro photoacoustic computed tomography
This Letter reports a new, to the best of our knowledge, high-frequency surface-micromachined optical ultrasound transducer (HF-SMOUT) array for micro photoacoustic computed tomography (µPACT). An 11 × 11 mm22D array of 220 × 220 elements (35 µm in diameter) is designed, fabricated, and characterized. The optical resonance wavelength (ORW) of ≥90% of the elements falls within a 6-nm range. The acoustic center frequency and bandwidth of the elements are ∼14 MHz and ∼18 MHz (129%), respectively. The noise equivalent pressure (NEP) is 161 Pa (or 18 mPa/Hz) within a measurement bandwidth of 5–75 MHz. The standard deviation of the ORW drift is 0.45 nm and 0.93 nm within 25°C−55°C, respectively, and during a seven-day continuous water immersion. PACT experiments are conducted to evaluate the imaging performances of the HF-SMOUT array. The spatial resolution is estimated as 90 µm (axial) and 250–750 µm (lateral) within a 10 × 10 mm2field of view (FoV) and the imaging depth of 16 mm. A 3D PA image of a knotted black hair target is also successfully acquired. These results demonstrate the feasibility of using the HF-SMOUT array for µPACT applications.  more » « less
Award ID(s):
2330199 2036134
PAR ID:
10492062
Author(s) / Creator(s):
;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
49
Issue:
5
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 1181
Size(s):
Article No. 1181
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper reports a new 2D surface-micromachined optical ultrasound transducer (SMOUT) array consisting of 350 × 350 elements with highly uniform optical and acoustic performances. Each SMOUT element consists of a vacuum-sealed Fabry-Perot (F-P) interferometric cavity formed by two parallel partially reflective distributed Bragg reflectors (DBRs). Optical mapping in the 4 cm × 4 cm center region of the SMOUT array shows that the optical resonance wavelength (ORW) of > 94% of the elements falls within a narrow range of ≤ 10 nm. The center frequency, acoustic bandwidth and noise equivalent pressure (NEP) of the elements are determined to be 5 MHz, 5 MHz, and 20.7 Pa (with 16 times of signal averaging) or 172.5 Pa (without averaging) over a bandwidth of 10 MHz, respectively. The temperature and temporal stability of the SMOUT elements is also tested, which shows there is little variation in their ORW under large ambient temperature fluctuation and during continuous water immersion. To demonstrate its imaging capability, 2D and 3D PACT based on the SMOUT array is also conducted within a 3 cm × 3 cm field of view (FOV) at a depth of 3cm with no interrogation wavelength tuning. These results show that the SMOUT array could overcome some of the major limitations in existing ultrasound transducer arrays for PACT and provide a promising solution for achieving high-speed 3D imaging. 
    more » « less
  2. This article reports the fine-tuning of the optical resonance wavelength (ORW) of surface-micromachined optical ultrasound transducer (SMOUT) arrays to enable ultrasound data readout with non-tunable interrogation light sources for photoacoustic computed tomography (PACT). Permanent ORW tuning is achieved by material deposition onto or subtraction from the top diaphragm of each element with sub-nanometer resolution. For demonstration, a SMOUT array is first fabricated, and its ORW is tuned for readout with an 808 nm laser diode (LD). Experiments are conducted to characterize the optical and acoustic performances of the elements within the center region of the SMOUT array. Two-dimensional and three-dimensional PACT (photoacoustic computed tomography) is also performed to evaluate the imaging performance of the ORW-tuned SMOUT array. The results show that the ORW tuning does not degrade the optical, acoustic, and overall imaging performances of the SMOUT elements. As a result, the fine-tuning method enables new SMOUT-based PACT systems that are low cost, compact, powerful, and even higher speed, with parallel readout capability. 
    more » « less
  3. This article presents a back-off efficient power amplifier (PA) for mm-wave 5G and upcoming 6G beamforming phased array transceivers (PATs), incorporating advanced circuit designs and novel implementations in both passive and active components. Conventional back-off efficient PAs in the mm-wave frequency range occupy a large chip area, making it hard to fit them into PATs. To overcome this issue, we propose a compact back-off efficient Doherty PA (DPA) with a common base (CB) structure as the core of the PA and small low-loss passive elements. In addition, the proposed architecture moves the role of the input hybrid coupler to the interstage matching network while maintaining DPA functionality. The interstage matching provides the required phases for the main and auxiliary PAs, power division, and impedance matching. The PA prototype is fabricated in the GlobalFoundries 90-nm BiCMOS (9 HP) process. It achieves a peak gain of 20.4 dB at 28.45 GHz with a 1-dB bandwidth of 4.45 GHz. Under large-signal conditions, it archives >19.5-dBm Psat with >36% PAEsat. Its P1dB at 26, 28, and 30 GHz are 19.4, 19.3, and 19.3 dBm with 38.5%, 37.3%, and 36.8% PAE1 dB, respectively. In the 6-dB power back-off region, it reaches efficiencies of 29.1%, 31.1%, and 29.3% at 26, 28, and 30 GHz, respectively. When tested with the NR-FR2 test model at these frequencies, the PA achieves Pavg of 8.25, 8.45, and 8 dBm, and PAEavg of 13.9%, 14.5%, and 13.7% for a 400 M 1-CC 64-QAM signal, maintaining an rms error vector magnitude (EVMrms) of −25.8, −25.8, and −25.7 dB. In addition, in adjacent channel power ratio (ACPR) tests, the PA achieves −27, −26.2, and −30.8 dBc on the lower side and −28.4, −28.5, and −27.6 dBc on the higher side channels at 26, 28, and 30 GHz, respectivelyNot Available 
    more » « less
  4. Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)
    The Cosmology Large Angular Scale Surveyor (CLASS) telescope array surveys 75% of the sky from the Atacama desert in Chile at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the largest-angular scale (θ ≳ 1 ° ) CMB polarization with the aim of constraining the tensor-to-scalar ratio, r, measuring the optical depth to reionization, τ , to near the cosmic variance limit, and more. The CLASS Q-band (40 GHz), W-band (90 GHz), and dichroic high frequency (150/220 GHz) telescopes have been observing since June 2016, May 2018, and September 2019, respectively. On-sky optical characterization of the 40 GHz instrument has been published. Here, we present preliminary on-sky measurements of the beams at 90, 150, and 220 GHz, and pointing stability of the 90 and 150/220 GHz telescopes. The average 90, 150, and 220 GHz beams measured from dedicated observations of Jupiter have full width at half maximum (FWHM) of 0.615±0.019° , 0.378±0.005° , and 0.266 ± 0.008° , respectively. Telescope pointing variations are within a few % of the beam FWHM. 
    more » « less
  5. This Letter reports the integration of microlenses (MLs) on a surface-micromachined optical ultrasound transducer (SMOUT) array to enable parallel ultrasound data readout from a multiplicity of elements. The MLs are fabricated by photoresist patterning and reflow, and their focal lengths are optimized with parametric studies. Experiments are conducted to characterize the acoustic responsivity and its uniformity of the SMOUT-ML elements under different conditions. The temporal stability of SMOUT-ML elements immersed in water is assessed by monitoring their acoustic response continuously for 1 week. Parallel ultrasound signal readout is simulated with a small group of SMOUT-ML elements. Experimental results show that high acoustic sensitivity and excellent long-term stability can be achieved by the ML-integrated SMOUT array, which could provide a promising approach for enabling parallel ultrasound data acquisition for improving the imaging speed of 3D acoustic tomography. 
    more » « less