skip to main content


Title: A review of recent developments in low-frequency ultra-wideband microwave radiometry for studies of the cryosphere
Over the past decade, a series of airborne experiments in the Arctic and Antarctica explored microwave emission from sea ice and ice sheets at frequencies from 0.5 to 2 GHz. The experiments were motivated by the fact that lower frequencies penetrate deeper into a frozen surface, thus offering the possibility to measure physical temperatures at great depths in ice sheets and, subsequently, other unique geophysical observables including sea ice salinity. These experiments were made feasible by recent engineering advances in electronics, antenna design, and noise removal algorithms when operating outside of protected bands in the electromagnetic spectrum. These technical advances permit a new type of radiometer that not only operates at low frequency, but also obtains continuous spectral information over the band from 0.5 to 2 GHz. Spectral measurements facilitate an understanding of the physical processes controlling emission and also support the interpretation of results from single frequency instruments. This paper reviews the development of low-frequency, wide band radiometry and its application to cryosphere science over the past 10 years. The paper summarizes the engineering design of an airborne instrument and the associated algorithms to mitigate radio frequency interference. Theoretical models of emission built around the morphologic and electrical properties of cryospheric components are also described that identify the dominant physical processes contributing to emission spectra. New inversion techniques for geophysical parameter retrieval are summarized for both Arctic and Antarctic scenarios. Examples that illustrate how the measurements are used to inform on glaciological problems are presented. The paper concludes with a description of new instrument concepts that are foreseen to extend the technology into operation from space.  more » « less
Award ID(s):
1844793
NSF-PAR ID:
10435909
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Earth Science
Volume:
10
ISSN:
2296-6463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The topic of this paper is the airborne evaluation of ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS) measurement capabilities and surface-height-determination over crevassed glacial terrain, with a focus on the geodetical accuracy of geophysical data collected from a helicopter. To obtain surface heights over crevassed and otherwise complex ice surface, ICESat-2 data are analyzed using the density-dimension algorithm for ice surfaces (DDA-ice), which yields surface heights at the nominal 0.7 m along-track spacing of ATLAS data. As the result of an ongoing surge, Negribreen, Svalbard, provided an ideal situation for the validation objectives in 2018 and 2019, because many different crevasse types and morphologically complex ice surfaces existed in close proximity. Airborne geophysical data, including laser altimeter data (profilometer data at 905 nm frequency), differential Global Positioning System (GPS), Inertial Measurement Unit (IMU) data, on-board-time-lapse imagery and photographs, were collected during two campaigns in summers of 2018 and 2019. Airborne experiment setup, geodetical correction and data processing steps are described here. To date, there is relatively little knowledge of the geodetical accuracy that can be obtained from kinematic data collection from a helicopter. Our study finds that (1) Kinematic GPS data collection with correction in post-processing yields higher accuracies than Real-Time-Kinematic (RTK) data collection. (2) Processing of only the rover data using the Natural Resources Canada Spatial Reference System Precise Point Positioning (CSRS-PPP) software is sufficiently accurate for the sub-satellite validation purpose. (3) Distances between ICESat-2 ground tracks and airborne ground tracks were generally better than 25 m, while distance between predicted and actual ICESat-2 ground track was on the order of 9 m, which allows direct comparison of ice-surface heights and spatial statistical characteristics of crevasses from the satellite and airborne measurements. (4) The Lasertech Universal Laser System (ULS), operated at up to 300 m above ground level, yields full return frequency (400 Hz) and 0.06–0.08 m on-ice along-track spacing of height measurements. (5) Cross-over differences of airborne laser altimeter data are −0.172 ± 2.564 m along straight paths, which implies a precision of approximately 2.6 m for ICESat-2 validation experiments in crevassed terrain. (6) In summary, the comparatively light-weight experiment setup of a suite of small survey equipment mounted on a Eurocopter (Helicopter AS-350) and kinematic GPS data analyzed in post-processing using CSRS-PPP leads to high accuracy repeats of the ICESat-2 tracks. The technical results (1)–(6) indicate that direct comparison of ice-surface heights and crevasse depths from the ICESat-2 and airborne laser altimeter data is warranted. Numerical evaluation of height comparisons utilizes spatial surface roughness measures. The final result of the validation is that ICESat-2 ATLAS data, analyzed with the DDA-ice, facilitate surface-height determination over crevassed terrain, in good agreement with airborne data, including spatial characteristics, such as surface roughness, crevasse spacing and depth, which are key informants on the deformation and dynamics of a glacier during surge. 
    more » « less
  2. Abstract. Surface melting on the Antarctic Ice Sheet has been monitored by satellite microwave radiometry for over 40 years. Despite this long perspective, our understanding of the microwave emission from wet snow is still limited, preventing the full exploitation of these observations to study supraglacial hydrology. Using the Snow Microwave Radiative Transfer (SMRT) model, this study investigatesthe sensitivity of microwave brightness temperature to snow liquid water content at frequencies from 1.4 to 37 GHz. We first determine the snowpack properties for eight selected coastal sites byretrieving profiles of density, grain size and ice layers from microwave observations when the snowpack is dry during wintertime. Second, a series of brightness temperature simulations is run with added water. The results show that (i) a small quantity of liquid water (≈0.5 kg m−2) can be detected, but the actual quantity cannot be retrieved out of the full range of possible water quantities; (ii) the detection of a buried wet layer is possible up to a maximum depth of 1 to 6 m depending on the frequency (6–37 GHz) and on the snow properties (grain size, density) at each site; (iii) surface ponds and water-saturated areas may prevent melt detection, but the current coverage of these waterbodies in the large satellite field of view is presently too small in Antarctica to have noticeable effects; and (iv) at 1.4 GHz, while the simulations are less reliable, we found a weaker sensitivity to liquid water and the maximal depth of detection is relatively shallow (<10 m) compared to the typical radiation penetration depth in dry firn (≈1000 m) at this low frequency. These numerical results pave the way for the development of improved multi-frequency algorithms to detect melt intensity and the depth of liquid water below the surface in the Antarctic snowpack. 
    more » « less
  3. Radar sounding is a powerful tool for constraining subglacial conditions, which influence the mass balance of polar ice sheets and their contributions to global sea-level rise. A satellite-based radar sounder, such as those successfully demonstrated at Mars, would offer unprecedented spatial and temporal coverage of the subsurface. However, airborne sounding studies suggest that poorly constrained radar scattering in polar firn may produce performance-limiting clutter for terrestrial orbital sounders. We develop glaciologically constrained electromagnetic models of radar interactions in firn, test them against in situ data and multifrequency airborne radar observations, and apply the only model we find to be consistent with observation to assess the implications of firn clutter for orbital sounder system design. Our results show that in the very high-frequency (VHF) and ultrahigh-frequency (UHF) bands, radar interactions in the firn are dominated by quasi-specular reflections at the interfaces between layers of different densities and that off-nadir backscatter is likely the result of small-scale roughness in the subsurface density profiles. As a result, high frequency (HF) or low VHF center frequencies offer a significant advantage in near-surface clutter suppression compared to the UHF band. However, the noise power is the dominant constraint in all bands, so the near-surface clutter primarily constrains the extent to which the transmit power, pulselength, or antenna gain can be engineered to improve the signal-to-noise ratio. Our analysis suggests that the deep interior of terrestrial ice sheets is a difficult target for orbital sounding, which may require optimizations in azimuth processing and cross-track clutter suppression which complement existing requirements for sounding at the margins. 
    more » « less
  4. Abstract Dual-frequency millimeter-wavelength radar observations in snowfall are analyzed in order to evaluate differences in conventional polarimetric radar variables such as differential reflectivity ( Z DR ) specific differential phase shift ( K DP ) and linear depolarization ratio (LDR) at traditional cloud radar frequencies at Ka and W bands (~35 and ~94 GHz, correspondingly). Low radar beam elevation (~5°) measurements were performed at Oliktok Point, Alaska, with a scanning fully polarimetric radar operating in the horizontal–vertical polarization basis. This radar has the same gate spacing and very close beam widths at both frequencies, which largely alleviates uncertainties associated with spatial and temporal data matching. It is shown that observed Ka- and W-band Z DR differences are, on average, less than about 0.5 dB and do not have a pronounced trend as a function of snowfall reflectivity. The observed Z DR differences agree well with modeling results obtained using integration over nonspherical ice particle size distributions. For higher signal-to-noise ratios, K DP data derived from differential phase measurements are approximately scaled as reciprocals of corresponding radar frequencies indicating that the influence of non-Rayleigh scattering effects on this variable is rather limited. This result is also in satisfactory agreement with data obtained by modeling using realistic particle size distributions. Observed Ka- and W-band LDR differences are strongly affected by the radar hardware system polarization “leak” and are generally less than 4 dB. Smaller differences are observed for higher depolarizations, where the polarization “leak” is less pronounced. Realistic assumptions about particle canting and the system polarization isolation lead to modeling results that satisfactorily agree with observational dual-frequency LDR data. 
    more » « less
  5. Abstract. The role of clouds in the Arctic radiation budget is not well understood. Ground-based and airborne measurements provide valuable data to test and improve our understanding. However, the ground-based measurements are intrinsically sparse, and the airborne observations are snapshots in time and space. Passive remote sensing measurements from satellite sensors offer high spatial coverage and an evolving time series, having lengths potentially of decades. However, detecting clouds by passive satellite remote sensing sensors is challenging over the Arctic because of the brightness of snow and ice in the ultraviolet and visible spectral regions and because of the small brightness temperature contrast to the surface. Consequently, the quality of the resulting cloud data products needs to be assessed quantitatively. In this study, we validate the cloud data products retrieved from the Advanced Very High Resolution Radiometer (AVHRR) post meridiem (PM) data from the polar-orbiting NOAA-19 satellite and compare them with those derived from the ground-based instruments during the sunlit months. The AVHRR cloud data products by the European Space Agency (ESA) Cloud Climate Change Initiative (Cloud_CCI) project uses the observations in the visible and IR bands to determine cloud properties. The ground-based measurements from four high-latitude sites have been selected for this investigation: Hyytiälä (61.84∘ N, 24.29∘ E), North Slope of Alaska (NSA; 71.32∘ N, 156.61∘ W), Ny-Ålesund (Ny-Å; 78.92∘ N, 11.93∘ E), and Summit (72.59∘ N, 38.42∘ W). The liquid water path (LWP) ground-based data are retrieved from microwave radiometers, while the cloud top height (CTH) has been determined from the integrated lidar–radar measurements. The quality of the satellite products, cloud mask and cloud optical depth (COD), has been assessed using data from NSA, whereas LWP and CTH have been investigated over Hyytiälä, NSA, Ny-Å, and Summit. The Cloud_CCI COD results for liquid water clouds are in better agreement with the NSA radiometer data than those for ice clouds. For liquid water clouds, the Cloud_CCI COD is underestimated roughly by 3 optical depth (OD) units. When ice clouds are included, the underestimation increases to about 5 OD units. The Cloud_CCI LWP is overestimated over Hyytiälä by ≈7 g m−2, over NSA by ≈16 g m−2, and over Ny-Å by ≈24 g m−2. Over Summit, CCI LWP is overestimated for values ≤20 g m−2 and underestimated for values >20 g m−2. Overall the results of the CCI LWP retrievals are within the ground-based instrument uncertainties. To understand the effects of multi-layer clouds on the CTH retrievals, the statistics are compared between the single-layer clouds and all types (single-layer + multi-layer). For CTH retrievals, the Cloud_CCI product overestimates the CTH for single-layer clouds. When the multi-layer clouds are included (i.e., all types), the observed CTH overestimation becomes an underestimation of about 360–420 m. The CTH results over Summit station showed the highest biases compared to the other three sites. To understand the scale-dependent differences between the satellite and ground-based data, the Bland–Altman method is applied. This method does not identify any scale-dependent differences for all the selected cloud parameters except for the retrievals over the Summit station. In summary, the Cloud_CCI cloud data products investigated agree reasonably well with those retrieved from ground-based measurements made at the four high-latitude sites.

     
    more » « less