skip to main content


Title: Validation of the Cloud_CCI (Cloud Climate Change Initiative) cloud products in the Arctic

Abstract. The role of clouds in the Arctic radiation budget is not well understood. Ground-based and airborne measurements provide valuable data to test and improve our understanding. However, the ground-based measurements are intrinsically sparse, and the airborne observations are snapshots in time and space. Passive remote sensing measurements from satellite sensors offer high spatial coverage and an evolving time series, having lengths potentially of decades. However, detecting clouds by passive satellite remote sensing sensors is challenging over the Arctic because of the brightness of snow and ice in the ultraviolet and visible spectral regions and because of the small brightness temperature contrast to the surface. Consequently, the quality of the resulting cloud data products needs to be assessed quantitatively. In this study, we validate the cloud data products retrieved from the Advanced Very High Resolution Radiometer (AVHRR) post meridiem (PM) data from the polar-orbiting NOAA-19 satellite and compare them with those derived from the ground-based instruments during the sunlit months. The AVHRR cloud data products by the European Space Agency (ESA) Cloud Climate Change Initiative (Cloud_CCI) project uses the observations in the visible and IR bands to determine cloud properties. The ground-based measurements from four high-latitude sites have been selected for this investigation: Hyytiälä (61.84∘ N, 24.29∘ E), North Slope of Alaska (NSA; 71.32∘ N, 156.61∘ W), Ny-Ålesund (Ny-Å; 78.92∘ N, 11.93∘ E), and Summit (72.59∘ N, 38.42∘ W). The liquid water path (LWP) ground-based data are retrieved from microwave radiometers, while the cloud top height (CTH) has been determined from the integrated lidar–radar measurements. The quality of the satellite products, cloud mask and cloud optical depth (COD), has been assessed using data from NSA, whereas LWP and CTH have been investigated over Hyytiälä, NSA, Ny-Å, and Summit. The Cloud_CCI COD results for liquid water clouds are in better agreement with the NSA radiometer data than those for ice clouds. For liquid water clouds, the Cloud_CCI COD is underestimated roughly by 3 optical depth (OD) units. When ice clouds are included, the underestimation increases to about 5 OD units. The Cloud_CCI LWP is overestimated over Hyytiälä by ≈7 g m−2, over NSA by ≈16 g m−2, and over Ny-Å by ≈24 g m−2. Over Summit, CCI LWP is overestimated for values ≤20 g m−2 and underestimated for values >20 g m−2. Overall the results of the CCI LWP retrievals are within the ground-based instrument uncertainties. To understand the effects of multi-layer clouds on the CTH retrievals, the statistics are compared between the single-layer clouds and all types (single-layer + multi-layer). For CTH retrievals, the Cloud_CCI product overestimates the CTH for single-layer clouds. When the multi-layer clouds are included (i.e., all types), the observed CTH overestimation becomes an underestimation of about 360–420 m. The CTH results over Summit station showed the highest biases compared to the other three sites. To understand the scale-dependent differences between the satellite and ground-based data, the Bland–Altman method is applied. This method does not identify any scale-dependent differences for all the selected cloud parameters except for the retrievals over the Summit station. In summary, the Cloud_CCI cloud data products investigated agree reasonably well with those retrieved from ground-based measurements made at the four high-latitude sites.

 
more » « less
Award ID(s):
2137091 1801477
NSF-PAR ID:
10472940
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Atmospheric Measurement Techniques
Date Published:
Journal Name:
Atmospheric Measurement Techniques
Volume:
16
Issue:
11
ISSN:
1867-8548
Page Range / eLocation ID:
2903 to 2918
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Accurate boundary layer temperature and humidity profiles are crucial for successful forecasting of fog, and accurate retrievals of liquid water path are important for understanding the climatological significance of fog. Passive ground-based remote sensing systems such as microwave radiometers (MWRs) and infrared spectrometers like the Atmospheric Emitted Radiance Interferometer (AERI), which measures spectrally resolved infrared radiation (3.3 to 19.2 µm), can retrieve both thermodynamic profiles and liquid water path. Both instruments are capable of long-term unattended operation and have the potential to support operational forecasting. Here we compare physical retrievals of boundary layer thermodynamic profiles and liquid water path during 12 cases of thin (LWP<40 g m−2) supercooled radiation fog from an MWR and an AERI collocated in central Greenland. We compare both sets of retrievals to in-situ measurements from radiosondes and surface-based temperature and humidity sensors. The retrievals based on AERI observations accurately capture shallow surface-based temperature inversions (0–10 m a.g.l.) with lapse rates of up to −1.2 ∘C m−1, whereas the strength of the surface-based temperature inversions retrieved from MWR observations alone are uncorrelated with in-situ measurements, highlighting the importance of constraining MWR thermodynamic profile retrievals with accurate surface meteorological data. The retrievals based on AERI observations detect fog onset (defined by a threshold in liquid water path) earlier than those based on MWR observations by 25 to 185 min. We propose that, due to the high sensitivity of the AERI instrument to near-surface temperature and small changes in liquid water path, the AERI (or an equivalent infrared spectrometer) could be a useful instrument for improving fog monitoring and nowcasting, particularly for cases of thin radiation fog under otherwise clear skies, which can have important radiative impacts at the surface. 
    more » « less
  2. Abstract The Southern Ocean is covered by a large amount of clouds with high cloud albedo. However, as reported by previous climate model intercomparison projects, underestimated cloudiness and overestimated absorption of solar radiation (ASR) over the Southern Ocean lead to substantial biases in climate sensitivity. The present study revisits this long-standing issue and explores the uncertainty sources in the latest CMIP6 models. We employ 10-year satellite observations to evaluate cloud radiative effect (CRE) and cloud physical properties in five CMIP6 models that provide comprehensive output of cloud, radiation, and aerosol. The simulated longwave, shortwave, and net CRE at the top of atmosphere in CMIP6 are comparable with the CERES satellite observations. Total cloud fraction (CF) is also reasonably simulated in CMIP6, but the comparison of liquid cloud fraction (LCF) reveals marked biases in spatial pattern and seasonal variations. The discrepancies between the CMIP6 models and the MODIS satellite observations become even larger in other cloud macro- and micro-physical properties, including liquid water path (LWP), cloud optical depth (COD), and cloud effective radius, as well as aerosol optical depth (AOD). However, the large underestimation of both LWP and cloud effective radius (regional means ∼20% and 11%, respectively) results in relatively smaller bias in COD, and the impacts of the biases in COD and LCF also cancel out with each other, leaving CRE and ASR reasonably predicted in CMIP6. An error estimation framework is employed, and the different signs of the sensitivity errors and biases from CF and LWP corroborate the notions that there are compensating errors in the modeled shortwave CRE. Further correlation analyses of the geospatial patterns reveal that CF is the most relevant factor in determining CRE in observations, while the modeled CRE is too sensitive to LWP and COD. The relationships between cloud effective radius, LWP, and COD are also analyzed to explore the possible uncertainty sources in different models. Our study calls for more rigorous calibration of detailed cloud physical properties for future climate model development and climate projection. 
    more » « less
  3. Understanding variations in atmospheric ozone in the Arctic is difficult because there are only a few long-term records of vertical ozone profiles in this region. We present 12 years of ozone profiles from February 2005 to February 2017 at four sites: Summit Station, Greenland; Ny-Ålesund, Svalbard, Norway; and Alert and Eureka, Nunavut, Canada. These profiles are created by combining ozonesonde measurements with ozone profile retrievals using data from the Microwave Limb Sounder (MLS). This combination creates a high-quality dataset with low uncertainty values by relying on in situ measurements of the maximum altitude of the ozonesondes (∼30 km) and satellite retrievals in the upper atmosphere (up to 60 km). For each station, the total column ozone (TCO) and the partial column ozone (PCO) in four atmospheric layers (troposphere to upper stratosphere) are analyzed. Overall, the seasonal cycles are similar at these sites. However, the TCO over Ny-Ålesund starts to decline 2 months later than at the other sites. In summer, the PCO in the upper stratosphere over Summit Station is slightly higher than at the other sites and exhibits a higher standard deviation. The decrease in PCO in the middle and upper stratosphere during fall is also lower over Summit Station. The maximum value of the lower- and middle-stratospheric PCO is reached earlier in the year over Eureka. Trend analysis over the 12-year period shows significant trends in most of the layers over Summit and Ny-Ålesund during summer and fall. To understand deseasonalized ozone variations, we identify the most important dynamical drivers of Arctic ozone at each level. These drivers are chosen based on mutual selected proxies at the four sites using stepwise multiple regression (SMR) analysis of various dynamical parameters with deseasonalized data. The final regression model is able to explain more than 80 % of the TCO and more than 70 % of the PCO in almost all of the layers. The regression model provides the greatest explanatory value in the middle stratosphere. The important proxies of the deseasonalized ozone time series at the four sites are tropopause pressure (TP) and equivalent latitude (EQL) at 370 K in the troposphere, the quasi-biennial oscillation (QBO) in the troposphere and lower stratosphere, the equivalent latitude at 550 K in the middle and upper stratosphere, and the eddy heat flux (EHF) and volume of polar stratospheric clouds throughout the stratosphere. 
    more » « less
  4. Abstract. We use the CloudSat 2006–2016 data record to estimate snowfall over theGreenland Ice Sheet (GrIS). We first evaluate CloudSat snowfall retrievalswith respect to remaining ground-clutter issues. Comparing CloudSatobservations to the GrIS topography (obtained from airborne altimetrymeasurements during IceBridge) we find that at the edges of the GrISspurious high-snowfall retrievals caused by ground clutter occasionallyaffect the operational snowfall product. After correcting for this effect,the height of the lowest valid CloudSat observation is about 1200&thinsp;mabove the local topography as defined by IceBridge. We then use ground-based millimeter wavelength cloud radar (MMCR) observations obtained from the Integrated Characterization of Energy, Clouds, Atmospheric state, and Precipitation at Summit, Greenland (ICECAPS) experiment to devise a simple,empirical correction to account for precipitation processes occurringbetween the height of the observed CloudSat reflectivities and the snowfallnear the surface. Using the height-corrected, clutter-cleared CloudSatreflectivities we next evaluate various ZS relationships in terms ofsnowfall accumulation at Summit through comparison with weekly stake fieldobservations of snow accumulation available since 2007. Using a set of threeZS relationships that best agree with the observed accumulation at Summit,we then calculate the annual cycle snowfall over the entire GrIS as well asover different drainage areas and compare the derived mean values and annualcycles of snowfall to ERA-Interim reanalysis. We find the annual meansnowfall over the GrIS inferred from CloudSat to be 34±7.5&thinsp;cm&thinsp;yr−1liquid equivalent (where the uncertainty is determined by the range invalues between the three different ZS relationships used). In comparison,the ERA-Interim reanalysis product only yields 30&thinsp;cm&thinsp;yr−1 liquid equivalentsnowfall, where the majority of the underestimation in the reanalysisappears to occur in the summer months over the higher GrIS and appears to berelated to shallow precipitation events. Comparing all available estimatesof snowfall accumulation at Summit Station, we find the annually averagedliquid equivalent snowfall from the stake field to be between 20 and 24&thinsp;cm&thinsp;yr−1, depending on the assumed snowpack density and from CloudSat 23±4.5&thinsp;cm&thinsp;yr−1. The annual cycle at Summit is generally similar betweenall data sources, with the exception of ERA-Interim reanalysis, which showsthe aforementioned underestimation during summer months.

     
    more » « less
  5. Abstract. Clouds warm the surface in the longwave (LW), and this warming effect can be quantified through the surface LW cloud radiativeeffect (CRE). The global surface LW CRE has been estimated over more than2 decades using space-based radiometers (2000–2021) and over the 5-year period ending in 2011 using the combination of radar, lidar and space-basedradiometers. Previous work comparing these two types of retrievals has shown that the radiometer-based cloud amount has some bias over icy surfaces. Here we propose new estimates of the global surface LW CRE from space-based lidarobservations over the 2008–2020 time period. We show from 1D atmosphericcolumn radiative transfer calculations that surface LW CRE linearly decreases with increasing cloud altitude. These computations allow us toestablish simple parameterizations between surface LW CRE and five cloud properties that are well observed by the Cloud-Aerosol Lidar and InfraredPathfinder Satellite Observations (CALIPSO) space-based lidar: opaque cloud cover and altitude and thin cloud cover, altitude, and emissivity. We evaluate this new surface LWCRE–LIDAR product by comparing it to existingsatellite-derived products globally on instantaneous collocated data atfootprint scale and on global averages as well as to ground-based observations at specific locations. This evaluation shows good correlationsbetween this new product and other datasets. Our estimate appears to be animprovement over others as it appropriately captures the annual variabilityof the surface LW CRE over bright polar surfaces and it provides a datasetmore than 13 years long. 
    more » « less