skip to main content


This content will become publicly available on June 12, 2024

Title: From Curves to Words
Blank, in his Ph.D. thesis on determining whether a planar closed curve $\gamma$ is self-overlapping, constructed a combinatorial word geometrically over the faces of $\gamma$ by drawing cuts from each face to a point at infinity and tracing their intersection points with $\gamma$. Independently, Nie, in an unpublished manuscript, gave an algorithm to determine the minimum area swept out by any homotopy from a closed curve $\gamma$ to a point. Nie constructed a combinatorial word algebraically over the faces of $\gamma$ inspired by ideas from geometric group theory, followed by dynamic programming over the subwords. In this paper, we examine the definitions of the two words and prove the equivalence between Blank's word and Nie's word under the right assumptions.  more » « less
Award ID(s):
1664858
NSF-PAR ID:
10435938
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Young Researcher's Forum at CG Week
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We apply the method of orbit harmonics to the set of break divisors and orientable divisors on graphs to obtain the central and external zonotopal algebras, respectively. We then relate a construction of Efimov in the context of cohomological Hall algebras to the central zonotopal algebra of a graph $G_{Q,\gamma }$ constructed from a symmetric quiver $Q$ with enough loops and a dimension vector $\gamma $. This provides a concrete combinatorial perspective on the former work, allowing us to identify the quantum Donaldson–Thomas (DT) invariants as the Hilbert series of the space of $S_{\gamma }$-invariants of the Postnikov–Shapiro slim subgraph space attached to $G_{Q,\gamma }$. The connection with orbit harmonics in turn allows us to give a manifestly nonnegative combinatorial interpretation to numerical DT invariants as the number of $S_{\gamma }$-orbits under the permutation action on the set of break divisors on $G$. We conclude with several representation-theoretic consequences, whose combinatorial ramifications may be of independent interest.

     
    more » « less
  2. Topological Data Analysis (TDA) utilizes concepts from topology to analyze data. In general, TDA considers objects similar based on a topological invariant. Topological invariants are properties of the topological space that are homeomorphic; resilient to deformation in the space. The Euler-Poincaré Characteristic is a classic topological invariant that represents the alternating sum of the vertices, edges, faces, and higherorder cells of a closed surface. Tracking the Euler characteristic over a topological filtration produces an Euler Characteristic Curve (ECC). This study introduces a computational technique to determine the ECC of R2 or R3 data; the technique generalizes to higher dimensions. This technique separates landscapes of lowerorder homologies utilizing triangulations of the space. 
    more » « less
  3. Abstract Let f : ℙ 1 → ℙ 1 {f:\mathbb{P}^{1}\to\mathbb{P}^{1}} be a map of degree > 1 {>1} defined over a function field k = K ⁢ ( X ) {k=K(X)} , where K is a number field and X is a projective curve over K . For each point a ∈ ℙ 1 ⁢ ( k ) {a\in\mathbb{P}^{1}(k)} satisfying a dynamical stability condition, we prove that the Call–Silverman canonical height for specialization f t {f_{t}} at point a t {a_{t}} , for t ∈ X ⁢ ( ℚ ¯ ) {t\in X(\overline{\mathbb{Q}})} outside a finite set, induces a Weil height on the curve X ; i.e., we prove the existence of a ℚ {\mathbb{Q}} -divisor D = D f , a {D=D_{f,a}} on X so that the function t ↦ h ^ f t ⁢ ( a t ) - h D ⁢ ( t ) {t\mapsto\hat{h}_{f_{t}}(a_{t})-h_{D}(t)} is bounded on X ⁢ ( ℚ ¯ ) {X(\overline{\mathbb{Q}})} for any choice of Weil height associated to D . We also prove a local version, that the local canonical heights t ↦ λ ^ f t , v ⁢ ( a t ) {t\mapsto\hat{\lambda}_{f_{t},v}(a_{t})} differ from a Weil function for D by a continuous function on X ⁢ ( ℂ v ) {X(\mathbb{C}_{v})} , at each place v of the number field K . These results were known for polynomial maps f and all points a ∈ ℙ 1 ⁢ ( k ) {a\in\mathbb{P}^{1}(k)} without the stability hypothesis,[21, 14],and for maps f that are quotients of endomorphisms of elliptic curves E over k and all points a ∈ ℙ 1 ⁢ ( k ) {a\in\mathbb{P}^{1}(k)} . [32, 29].Finally, we characterize our stability condition in terms of the geometry of the induced map f ~ : X × ℙ 1 ⇢ X × ℙ 1 {\tilde{f}:X\times\mathbb{P}^{1}\dashrightarrow X\times\mathbb{P}^{1}} over K ; and we prove the existence of relative Néron models for the pair ( f , a ) {(f,a)} , when a is a Fatou point at a place γ of k , where the local canonical height λ ^ f , γ ⁢ ( a ) {\hat{\lambda}_{f,\gamma}(a)} can be computed as an intersection number. 
    more » « less
  4. In psychophysics and psychometrics, an integral method to the discipline involves charting how a person’s response pattern changes according to a continuum of stimuli. For instance, in hearing science, Visual Analog Scaling tasks are experiments in which listeners hear sounds across a speech continuum and give a numeric rating between 0 and 100 conveying whether the sound they heard was more like word “a” or more like word “b” (i.e. each participant is giving a continuous categorization response). By taking all the continuous categorization responses across the speech continuum, a parametric curve model can be fit to the data and used to analyze any individual’s response pattern by speech continuum. Standard statistical modeling techniques are not able to accommodate all of the specific requirements needed to analyze these data. Thus, Bayesian hierarchical modeling techniques are employed to accommodate group-level non-linear curves, individual-specific non-linear curves, continuum-level random effects, and a subject-specific variance that is predicted by other model parameters. In this paper, a Bayesian hierarchical model is constructed to model the data from a Visual Analog Scaling task study of mono-lingual and bi-lingual participants. Any nonlinear curve function could be used and we demonstrate the technique using the 4-parameter logistic function. Overall, the model was found to fit particularly well to the data from the study and results suggested that the magnitude of the slope was what most defined the differences in response patterns between continua.

     
    more » « less
  5. Summary

    This article develops an algebraic multigrid (AMG) method for solving systems of elliptic boundary‐value problems. It is well known that multigrid for systems of elliptic equations faces many challenges that do not arise for most scalar equations. These challenges include strong intervariable couplings, multidimensional and possibly large near‐nullspaces, analytically unknown near‐nullspaces, delicate selection of coarse degrees of freedom (CDOFs), and complex construction of intergrid operators. In this article, we consider only the selection of CDOFs and the construction of the interpolation operator. The selection is an extension of the Ruge–Stuben algorithm using a new strength of connection measure taken between nodal degrees of freedom, that is, between all degrees of freedom located at a gridpoint to all degrees of freedom at another gridpoint. This measure is based on a local correlation matrix generated for a set of smoothed test vectors derived from a relaxation‐based procedure. With this measure, selection of the CDOFs is then determined by the number of strongly correlated connections at each node, with the selection processed by a Ruge–Stuben coloring scheme. Having selected the CDOFs, the interpolation operator is constructed using a bootstrap AMG (BAMG) procedure. We apply the BAMG procedure either over the smoothed test vectors to obtain an intervariable interpolation scheme or over the like‐variable components of the smoothed test vectors to obtain an intravariable interpolation scheme. Moreover, comparing the correlation measured between the intravariable couplings with the correlation between all couplings, a mixed intravariable and intervariable interpolation scheme is developed. We further examine an indirect BAMG method that explicitly uses the coefficients of the system operator in constructing the interpolation weights. Finally, based on a weak approximation criterion, we consider a simple scheme to adapt the order of the interpolation (i.e., adapt the caliber or maximum number of coarse‐grid points that a fine‐grid point can interpolate from) over the computational domain.

     
    more » « less