Abstract TheFermiLarge Area Telescope (Fermi-LAT) has been widely used to search for Weakly Interacting Massive Particle (WIMP) dark matter signals due to its unparalleled sensitivity in the GeV energy band. The leading constraints for WIMP byFermi-LAT are obtained from the analyses of dwarf spheroidal galaxies within the Local Group, which are compelling targets for dark matter searches due to their relatively low astrophysical backgrounds and high dark matter content. In the meantime, the search for heavy dark matter with masses above TeV remains a compelling and relatively unexplored frontier. In this study, we utilize 14-yearFermi-LAT data to search for dark matter annihilation and decay signals in 8 classical dwarf spheroidal galaxies within the Local Group. We consider secondary emission caused by electromagnetic cascades of prompt gamma rays and electrons/positrons from dark matter, which enables us to extend the search withFermi-LAT to heavier dark matter cases. We also update the dark matter subhalo model with informative priors respecting the fact that they reside in subhalos of our Milky Way halo aiming to enhance the robustness of our results. We place constraints on dark matter annihilation cross section and decay lifetime for dark matter masses ranging from 103GeV to 1011GeV, where our limits are more stringent than those obtained by many other high-energy gamma-ray instruments.
more »
« less
On the gamma-ray emission from the core of the Sagittarius dwarf galaxy
ABSTRACT We use Fermi-LAT data to analyse the faint gamma-ray source located at the centre of the Sagittarius (Sgr) dwarf spheroidal galaxy. In the 4FGL-DR3 catalogue, this source is associated with the globular cluster, M54. We investigate the spectral energy distribution and spatial extension of this source, with the goal of testing two hypotheses: (1) the emission is due to millisecond pulsars within M54, or (2) the emission is due to annihilating dark matter from the Sgr halo. For the pulsar interpretation, we consider a two-component model which describes both the lower-energy magnetospheric emission and possible high-energy emission arising from inverse Compton scattering. We find that this source has a point-like morphology at low energies, consistent with magnetospheric emission, and find no evidence for a higher-energy component. For the dark matter interpretation, we find the signal favours a dark matter mass of mχ = 29.6 ± 5.8 GeV and an annihilation cross section of $$\sigma v = (2.1 \pm 0.59) \times 10^{-26} \, \text{cm}^3$$ s−1 for the $$b \bar{b}$$ channel (or mχ = 8.3 ± 3.8 GeV and $$\sigma v = (0.90 \pm 0.25) \times 10^{-26} \, \text{cm}^3$$ s−1 for the τ+τ− channel), when adopting a J-factor of $$J=10^{19.6} \, \text{GeV}^2 \, \text{cm}^{-5}$$. This parameter space is consistent with gamma-ray constraints from other dwarf galaxies and with dark matter interpretations of the Galactic Centre Gamma-Ray Excess.
more »
« less
- Award ID(s):
- 1813881
- PAR ID:
- 10435947
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 524
- Issue:
- 3
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 4574-4585
- Size(s):
- p. 4574-4585
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Monochromatic gamma-ray signals constitute a potential smoking gun signature for annihilating or decaying dark matter particles that could relatively easily be distinguished from astrophysical or instrumental backgrounds. We provide an updated assessment of the sensitivity of the Cherenkov Telescope Array (CTA) to such signals, based on observations of the Galactic centre region as well as of selected dwarf spheroidal galaxies. We find that current limits and detection prospects for dark matter masses above 300 GeV will be significantly improved, by up to an order of magnitude in the multi-TeV range. This demonstrates that CTA will set a new standard for gamma-ray astronomy also in this respect, as the world's largest and most sensitive high-energy gamma-ray observatory, in particular due to its exquisite energy resolution at TeV energies and the adopted observational strategy focussing on regions with large dark matter densities. Throughout our analysis, we use up-to-date instrument response functions, and we thoroughly model the effect of instrumental systematic uncertainties in our statistical treatment. We further present results for other potential signatures with sharp spectral features, e.g. box-shaped spectra, that would likewise very clearly point to a particle dark matter origin.more » « less
-
ABSTRACT We present highly sensitive measurements taken with MeerKAT at 1280 MHz as well as archival Green Bank Telescope (GBT), Murchison Widefield Array, and Very Large Array (VLA) images at 333, 88, and 74 MHz. We report the detection of synchrotron radio emission from the infrared dark cloud associated with the halo of the Sgr B complex on a scale of ∼60 pc. A strong spatial correlation between low-frequency radio continuum emission and dense molecular gas, combined with spectral index measurements, indicates enhanced synchrotron emission by cosmic ray electrons. Correlation of the Fe i 6.4 keV K α line and synchrotron emission provides compelling evidence that the low energy cosmic ray electrons are responsible for producing the K α line emission. The observed synchrotron emission within the halo of the Sgr B cloud complex has a mean spectral index α ∼ −1 ± 1, which gives the magnetic field strength ∼100 µG for cloud densities nH = 104–105 cm−3, and estimated cosmic ray ionization rates between 10−13 and 10−14 s−1. Furthermore, the energy spectrum of primary cosmic ray electrons is constrained to be E−3 ± 1 for typical energies of few hundred MeV. The extrapolation of this spectrum to higher energies is consistent with X-ray and γ-ray emission detected from this cloud. These measurements have important implications on the role that high cosmic ray electron fluxes at the Galactic centre play in production of radio synchrotron emission, the Fe i K α line emission at 6.4 keV, and ∼GeV γ-ray emission throughout the Central Molecular Zone.more » « less
-
ABSTRACT OT 081 is a well-known, luminous blazar that is remarkably variable in many energy bands. We present the first broadband study of the source, which includes very high energy (VHE, $$E\gt $$ 100 GeV) $$\gamma$$-ray data taken by the MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov telescopes) and H.E.S.S. (High Energy Stereoscopic System) imaging Cherenkov telescopes. The discovery of VHE $$\gamma$$-ray emission happened during a high state of $$\gamma$$-ray activity in July 2016, observed by many instruments from radio to VHE $$\gamma$$-rays. We identify four states of activity of the source, one of which includes VHE $$\gamma$$-ray emission. Variability in the VHE domain is found on daily time-scales. The intrinsic VHE spectrum can be described by a power law with index $$3.27\pm 0.44_{\rm stat}\pm 0.15_{\rm sys}$$ (MAGIC) and $$3.39\pm 0.58_{\rm stat}\pm 0.64_{\rm sys}$$ (H.E.S.S.) in the energy range of 55–300 and 120–500 GeV, respectively. The broadband emission cannot be successfully reproduced by a simple one-zone synchrotron self-Compton model. Instead, an additional external Compton component is required. We test a lepto-hadronic model that reproduces the data set well and a proton-synchrotron-dominated model that requires an extreme proton luminosity. Emission models that are able to successfully represent the data place the emitting region well outside of the broad-line region to a location at which the radiative environment is dominated by the infrared thermal radiation field of the dusty torus. In the scenario described by this flaring activity, the source appears to be a flat spectrum radio quasar (FSRQ), in contrast with past categorizations. This suggests that the source can be considered to be a transitional blazar, intermediate between BL Lac and FSRQ objects.more » « less
-
Abstract A flavour-tagged time-dependent angular analysis of $${{B} ^0_{s}} \!\rightarrow {{J /\psi }} \phi $$ B s 0 → J / ψ ϕ decays is presented where the $${J /\psi }$$ J / ψ meson is reconstructed through its decay to an $$e ^+e ^-$$ e + e - pair. The analysis uses a sample of pp collision data recorded with the LHCb experiment at centre-of-mass energies of 7 and $$8\text {\,Te V} $$ 8 \,Te V , corresponding to an integrated luminosity of $$3 \text {\,fb} ^{-1} $$ 3 \,fb - 1 . The $$C\!P$$ C P -violating phase and lifetime parameters of the $${B} ^0_{s} $$ B s 0 system are measured to be $${\phi _{{s}}} =0.00\pm 0.28\pm 0.07\text {\,rad}$$ ϕ s = 0.00 ± 0.28 ± 0.07 \,rad , $${\Delta \Gamma _{{s}}} =0.115\pm 0.045\pm 0.011\text {\,ps} ^{-1} $$ Δ Γ s = 0.115 ± 0.045 ± 0.011 \,ps - 1 and $${\Gamma _{{s}}} =0.608\pm 0.018\pm 0.012\text {\,ps} ^{-1} $$ Γ s = 0.608 ± 0.018 ± 0.012 \,ps - 1 where the first uncertainty is statistical and the second systematic. This is the first time that $$C\!P$$ C P -violating parameters are measured in the $${{B} ^0_{s}} \!\rightarrow {{J /\psi }} \phi $$ B s 0 → J / ψ ϕ decay with an $$e ^+e ^-$$ e + e - pair in the final state. The results are consistent with previous measurements in other channels and with the Standard Model predictions.more » « less
An official website of the United States government
