skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: The Inner 2 pc of Sagittarius A*: Simulations of the Circumnuclear Disk and Multiphase Gas Accretion in the Galactic Center
Abstract

The inner few parsecs of the Milky Way’s Galactic center contain the central accreting supermassive black hole, over a million stars, and multiple large gaseous structures. In the past, the structures at these length scales have generally been modeled independently of each other. It is consequently not well understood how these complex features interact with each other, nor how gas flows between the outer few parsecs and the inner subarcsecond region (1″ ≈ 0.04 pc). In this work, we present hydrodynamic simulations of the inner few parsecs of the Galactic center that, for the first time, combine a realistic treatment of stellar winds and the circumnuclear disk (CND) as they interact with the gravitational potential of the nuclear star cluster and Sagittarius A*. We observe interactions of the stellar winds with the inner edge of the CND, which leads to the growth of instabilities, induced accretion of cool gas from the inner edge of the disk, and the eventual formation of a small accretion disk of ∼104–105K withinr∼ 0.1 pc. The formation of an inner disk qualitatively agrees with observations. This disk grows in radial extent and mass with time on ≳10 kyr timescales, with a growth rate ofMtkyr3.5. We discuss additional physical mechanisms not yet included in this work that can improve our model.

 
more » « less
PAR ID:
10435984
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
953
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 22
Size(s):
Article No. 22
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We use 23 yr of astrometric and radial velocity data on the orbit of the star S0-2 to constrain a hypothetical intermediate-mass black hole orbiting the massive black hole Sgr A* at the Galactic center. The data place upper limits on variations of the orientation of the stellar orbit at levels between 0.°02 and 0.°07 per year. We use a combination of analytic estimates and full numerical integrations of the orbit of S0-2 in the presence of a black hole binary. For a companion intermediate-mass black hole outside the orbit of S0-2 (1020 au), we find that a companion black hole with massmcbetween 103and 105Mis excluded, with a boundary behaving asacmc1/3. For a companion withac< 1020 au, a black hole with mass between 103and 105Mis excluded, withacmc1/2. These bounds arise from quadrupolar perturbations of the orbit of S0-2. Significantly stronger bounds on an inner companion arise from the fact that the location of S0-2 is measured relative to the bright emission of Sgr A* and that separation is perturbed by the “wobble” of Sgr A* about the center of mass between it and the companion. The result is a set of bounds as small as 400Mat 200 au; the numerical simulations suggest a bound from these effects varying asacmc1. We compare and contrast our results with those from a recent analysis by the GRAVITY collaboration.

     
    more » « less
  2. Abstract

    The conventional accretion disk lore is that magnetized turbulence is the principal angular momentum transport process that drives accretion. However, when dynamically important large-scale magnetic fields thread an accretion disk, they can produce mass and angular momentum outflows, known as winds,that also drive accretion. Yet, the relative importance of turbulent and wind-driven angular momentum transport is still poorly understood. To probe this question, we analyze a long-duration (1.2 × 105rg/c) simulation of a rapidly rotating (a= 0.9) black hole feeding from a thick (H/r∼ 0.3), adiabatic, magnetically arrested disk (MAD), whose dynamically important magnetic field regulates mass inflow and drives both uncollimated and collimated outflows (i.e., winds and jets, respectively). By carefully disentangling the various angular momentum transport processes within the system, we demonstrate the novel result that disk winds and disk turbulence both extract roughly equal amounts of angular momentum from the disk. We find cumulative angular momentum and mass accretion outflow rates ofL̇r0.9andṀr0.4, respectively. This result suggests that understanding both turbulent and laminar stresses is key to understanding the evolution of systems where geometrically thick MADs can occur, such as the hard state of X-ray binaries, low-luminosity active galactic nuclei, some tidal disruption events, and possibly gamma-ray bursts.

     
    more » « less
  3. Abstract

    Fast radio bursts (FRBs) are brief, energetic, typically extragalactic flashes of radio emission whose progenitors are largely unknown. Although studying the FRB population is essential for understanding how these astrophysical phenomena occur, such studies have been difficult to conduct without large numbers of FRBs and characterizable observational biases. Using the recently released catalog of 536 FRBs published by the Canadian Hydrogen Intensity Mapping Experiment/Fast Radio Burst (CHIME/FRB) collaboration, we present a study of the FRB population that also calibrates for selection effects. Assuming a Schechter function, we infer a characteristic energy cut-off ofEchar=2.381.64+5.35×1041erg and a differential power-law index ofγ=1.30.4+0.7. Simultaneously, we infer a volumetric rate of [7.33.8+8.8(stat.)1.8+2.0(sys.)]×104Gpc−3yr−1above a pivot energy of 1039erg and below a scattering timescale of 10 ms at 600 MHz, and find we cannot significantly constrain the cosmic evolution of the FRB population with star-formation rate. Modeling the host’s dispersion measure (DM) contribution as a log-normal distribution and assuming a total Galactic contribution of 80 pc cm−3, we find a median value ofDMhost=8449+69pc cm−3, comparable with values typically used in the literature. Proposed models for FRB progenitors should be consistent with the energetics and abundances of the full FRB population predicted by our results. Finally, we infer the redshift distribution of FRBs detected with CHIME, which will be tested with the localizations and redshifts enabled by the upcoming CHIME/FRB Outriggers project.

     
    more » « less
  4. Abstract

    The dispersion measure of fast radio bursts (FRBs), arising from the interactions with free electrons along the propagation path, constitutes a unique probe of the cosmic baryon distribution. Their constraining power is further enhanced in combination with observations of the foreground large-scale structure and intervening galaxies. In this work, we present the first constraints on the partition of the cosmic baryons between the intergalactic medium (IGM) and circumgalactic medium (CGM), inferred from the FLIMFLAM spectroscopic survey. In its first data release, the FLIMFLAM survey targeted galaxies in the foreground of eight localized FRBs. Using Bayesian techniques, we reconstruct the underlying ∼Mpc-scale matter density field that is traced by the IGM gas. Simultaneously, deeper spectroscopy of intervening foreground galaxies (at impact parametersbr200) and the FRB host galaxies constrains the contribution from the CGM. Applying Bayesian parameter inference to our data and assuming a fiducial set of priors, we infer the IGM cosmic baryon fraction to befigm=0.590.10+0.11and a CGM gas fraction offgas=0.550.29+0.26for 1010MMhalo≲ 1013Mhalos. The mean FRB host dispersion measure (rest-frame) in our sample isDMhost=9019+29pccm3, of whichDMhostunk=6919+28pccm3arises from the host galaxy interstellar medium (ISM) and/or the FRB progenitor environment. While our currentfigmandfgasuncertainties are too broad to constrain most galactic feedback models, this result marks the first measurement of the IGM and CGM baryon fractions, as well as the first systematic separation of the FRB host dispersion measure into two components: arising from the halo and from the inner ISM/FRB engine.

     
    more » « less
  5. Abstract

    We present an analysis of nearly 1000 near-infrared, integrated-light spectra from APOGEE in the inner ∼7 kpc of M31. We utilize full-spectrum fitting with A-LIST simple stellar population spectral templates that represent a population of stars with the same age, [M/H], and [α/M]. With this, we determine the mean kinematics, metallicities,αabundances, and ages of the stellar populations of M31's bar, bulge, and inner disk (∼4–7 kpc). We find a nonaxisymmetric velocity field in M31 resulting from the presence of a bar. The bulge of M31 is less metal-rich (mean [M/H] =0.1490.081+0.067dex) than the disk, features minima in metallicity on either side of the bar ([M/H] ∼ −0.2), and is enhanced inαabundance (mean [α/M] =0.2810.038+0.035). The disk of M31 within ∼7 kpc is enhanced in both metallicity ([M/H] =0.0230.052+0.050) andαabundance ([α/M] =0.2740.025+0.020). Both of these structural components are uniformly old at ≃12 Gyr. We find the mean metallicity increases with distance from the center of M31, with the steepest gradient along the disk major axis (0.043 ± 0.021 dex kpc−1). This gradient is the result of changing light contributions from the bulge and disk. The chemodynamics of stellar populations encodes information about a galaxy’s chemical enrichment, star formation history, and merger history, allowing us to discuss new constraints on M31's formation. Our results provide a stepping stone between our understanding of the Milky Way and other external galaxies.

     
    more » « less