In this work, we study a class of recently discovered meter-wave solar transients referred to as Weak Impulsive Narrowband Quiet Sun Emission (WINQSEs). Their strength is a few percent of the quiet Sun background and is characterized by their very impulsive, narrowband, and ubiquitous presence in quiet Sun regions. Mondal et al. (2020) hypothesized that these emissions might be the radio counterparts of nanoflares, and their potential significance warrants detailed studies. Here we present an analysis of data from an extremely quiet time and with improved methodology over the previous work. As before, we detect numerous WINQSEs, which we have used for their further characterization. Their key properties, namely, their impulsive nature and ubiquitous presence in the quiet Sun, are observed in these data as well. Interestingly, we also find some of the observed properties to differ significantly from the earlier work. With this demonstration of routine detection of WINQSEs, we hope to engender interest in the larger community to build a deeper understanding of WINQSEs.
Weak Impulsive Narrowband Quiet Sun Emissions (WINQSEs) are a newly discovered class of radio emission from the solar corona. These emissions are characterized by their extremely impulsive, narrowband, and ubiquitous nature. We have systematically been working on their detailed characterization, including their strengths, morphologies, temporal characteristics, energies, etc. This work is the next step in this series and focuses on the spectral nature of WINQSEs. Given that their strength is only a few percent of the background solar emission, we have adopted an extremely conservative approach to reliably identify WINQSES. Only a handful of WINQSEs meet all of our stringent criteria. Their flux densities lie in the 20–50 Jy range and they have compact morphologies. For the first time, we estimate their bandwidths and find them to be less than 700 kHz, consistent with expectations based on earlier observations. Interestingly, we also find similarities between the spectral nature of WINQSEs and the solar radio spikes. This is consistent with our hypothesis that the WINQSEs are the weaker cousins of the type III radio bursts and are likely to be the low-frequency radio counterparts of the nanoflares, originally hypothesized as a possible explanation for coronal heating.
more » « less- Award ID(s):
- 1654382
- PAR ID:
- 10435988
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 953
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 4
- Size(s):
- Article No. 4
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The solar corona is extremely dynamic. Every leap in observational capabilities has been accompanied by unexpected revelations of complex dynamic processes. The ever more sensitive instruments now allow us to probe events with increasingly weaker energetics. A recent leap in the low-frequency radio solar imaging ability has led to the discovery of a new class of emissions, namely weak impulsive narrowband quiet Sun emissions (WINQSEs). They are hypothesized to be the radio signatures of coronal nanoflares and could potentially have a bearing on the long standing coronal heating problem. In view of the significance of this discovery, this work has been followed up by multiple independent studies. These include detecting WINQSEs in multiple data sets, using independent detection techniques and software pipelines, and looking for their counterparts at other wavelengths. This work focuses on investigating morphological properties of WINQSEs and also improves upon the methodology used for detecting WINQSEs in earlier works. We present a machine learning-based algorithm to detect WINQSEs, classify them based on their morphology, and model the isolated ones using 2D Gaussians. We subject multiple data sets to this algorithm to test its veracity. Interestingly, despite the expectations of their arising from intrinsically compact sources, WINQSEs tend to be resolved in our observations. We propose that this angular broadening arises due to coronal scattering. Hence, WINQSEs can provide ubiquitous and ever-present diagnostic of coronal scattering (and, in turn, coronal turbulence) in the quiet Sun regions, which has not been possible until date.
-
Abstract Even small solar flares can display a surprising level of complexity regarding their morphology and temporal evolution. Many of their properties, such as energy release and electron acceleration can be studied using highly complementary observations at X-ray and radio wavelengths. We present X-ray observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager and radio observations from the Karl G. Jansky Very Large Array (VLA) of a series of GOES A3.4–B1.6 class flares observed on 2013 April 23. The flares, as seen in X-ray and extreme ultraviolet, originated from multiple locations within active region NOAA 11726. A veritable zoo of different radio emissions between 1 GHz and 2 GHz was observed cotemporally with the X-ray flares. In addition to broadband continuum emission, broadband short-lived bursts and narrowband spikes, indicative of accelerated electrons, were observed. However, these sources were located up to 150″ away from the flaring X-ray sources but only some of these emissions could be explained as signatures of electrons that were accelerated near the main flare site. For other sources, no obvious magnetic connection to the main flare site could be found. These emissions likely originate from secondary acceleration sites triggered by the flare, but may be due to reconnection and acceleration completely unrelated to the cotemporally observed flare. Thanks to the extremely high sensitivity of the VLA, not achieved with current X-ray instrumentation, it is shown that particle acceleration happens frequently and at multiple locations within a flaring active region.more » « less
-
Abstract We present a highly complete sample of broad-line (Type 1) QSOs out to z ∼ 3 selected by their mid-infrared colors, a method that is minimally affected by dust reddening. We remove host-galaxy emission from the spectra and fit for excess reddening in the residual QSOs, resulting in a Gaussian distribution of colors for unreddened (blue) QSOs, with a tail extending toward heavily reddened (red) QSOs, defined as having E ( B − V ) > 0.25. This radio-independent selection method enables us to compare red and blue QSO radio properties in both the FIRST (1.4 GHz) and VLASS (2–4 GHz) surveys. Consistent with recent results from optically selected QSOs from SDSS, we find that red QSOs have a significantly higher detection fraction and a higher fraction of compact radio morphologies at both frequencies. We employ radio stacking to investigate the median radio properties of the QSOs including those that are undetected in FIRST and VLASS, finding that red QSOs have significantly brighter radio emission and steeper radio spectral slopes compared with blue QSOs. Finally, we find that the incidence of red QSOs is strongly luminosity dependent, where red QSOs make up >40% of all QSOs at the highest luminosities. Overall, red QSOs comprise ∼40% of higher luminosity QSOs, dropping to only a few percent at lower luminosities. Furthermore, red QSOs make up a larger percentage of the radio-detected QSO population. We argue that dusty AGN-driven winds are responsible for both the obscuration as well as excess radio emission seen in red QSOs.more » « less
-
null (Ed.)Context. Periodicities have frequently been reported across many wavelengths in the solar corona. Correlated periods of ~5 min, comparable to solar p -modes, are suggestive of coupling between the photosphere and the corona. Aims. Our study investigates whether there are correlations in the periodic behavior of Type III radio bursts which are indicative of nonthermal electron acceleration processes, and coronal extreme ultraviolet (EUV) emission used to assess heating and cooling in an active region when there are no large flares. Methods. We used coordinated observations of Type III radio bursts from the FIELDS instrument on Parker Solar Probe (PSP), of EUV emissions by the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) and white light observations by SDO Helioseismic and Magnetic Image (HMI), and of solar flare X-rays by Nuclear Spectroscopic Telescope Array (NuSTAR) on April 12, 2019. Several methods for assessing periodicities are utilized and compared to validate periods obtained. Results. Periodicities of ~5 min in the EUV in several areas of an active region are well correlated with the repetition rate of the Type III radio bursts observed on both PSP and Wind. Detrended 211 and 171 Å light curves show periodic profiles in multiple locations, with 171 Å peaks sometimes lagging those seen in 211 Å. This is suggestive of impulsive events that result in heating and then cooling in the lower corona. NuSTAR X-rays provide evidence for at least one microflare during the interval of Type III bursts, but there is not a one-to-one correspondence between the X-rays and the Type III bursts. Our study provides evidence for periodic acceleration of nonthermal electrons (required to generate Type III radio bursts) when there were no observable flares either in the X-ray data or the EUV. The acceleration process, therefore, must be associated with small impulsive events, perhaps nanoflares.more » « less