skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: An Unsupervised Machine Learning-based Algorithm for Detecting Weak Impulsive Narrowband Quiet Sun Emissions and Characterizing Their Morphology
Abstract

The solar corona is extremely dynamic. Every leap in observational capabilities has been accompanied by unexpected revelations of complex dynamic processes. The ever more sensitive instruments now allow us to probe events with increasingly weaker energetics. A recent leap in the low-frequency radio solar imaging ability has led to the discovery of a new class of emissions, namely weak impulsive narrowband quiet Sun emissions (WINQSEs). They are hypothesized to be the radio signatures of coronal nanoflares and could potentially have a bearing on the long standing coronal heating problem. In view of the significance of this discovery, this work has been followed up by multiple independent studies. These include detecting WINQSEs in multiple data sets, using independent detection techniques and software pipelines, and looking for their counterparts at other wavelengths. This work focuses on investigating morphological properties of WINQSEs and also improves upon the methodology used for detecting WINQSEs in earlier works. We present a machine learning-based algorithm to detect WINQSEs, classify them based on their morphology, and model the isolated ones using 2D Gaussians. We subject multiple data sets to this algorithm to test its veracity. Interestingly, despite the expectations of their arising from intrinsically compact sources, WINQSEs tend to be resolved in our observations. We propose that this angular broadening arises due to coronal scattering. Hence, WINQSEs can provide ubiquitous and ever-present diagnostic of coronal scattering (and, in turn, coronal turbulence) in the quiet Sun regions, which has not been possible until date.

 
more » « less
Award ID(s):
1654382
PAR ID:
10444673
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
954
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 39
Size(s):
Article No. 39
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Coronal magnetic fields are well known to be one of the crucial parameters defining coronal physics and space weather. However, measuring the global coronal magnetic fields remains challenging. The polarization properties of coronal radio emissions are sensitive to coronal magnetic fields. While they can prove to be useful probes of coronal and heliospheric magnetic fields, their usage has been limited by technical and algorithmic challenges. We present a robust algorithm for precise polarization calibration and imaging of low-radio frequency solar observations and demonstrate it on data from the Murchison Widefield Array, a Square Kilometre Array (SKA) precursor. This algorithm is based on theMeasurement Equationframework, which forms the basis of all modern radio interferometric calibration and imaging. It delivers high-dynamic-range and high-fidelity full-Stokes solar radio images with instrumental polarization leakages <1%, on par with general astronomical radio imaging, and represents the state of the art. Opening up this rewarding, yet unexplored, phase space will enable multiple novel science investigations and offer considerable discovery potential. Examples include detection of low-level circular polarization from thermal coronal emission to estimate large-scale quiescent coronal fields; polarization of faint gyrosynchrotron emissions from coronal mass ejections for robust estimation of plasma parameters; and detection of the first-ever linear polarization at these frequencies. This method has been developed with the SKA in mind and will enable a new era of high-fidelity spectropolarimetric snapshot solar imaging at low radio frequencies.

     
    more » « less
  2. The dynamics and the structure of the solar corona are determined by its magnetic field. Measuring coronal magnetic fields is, however, extremely hard. The polarization of low-frequency radio emissions has long been recognized as one of the few effective observational probes of magnetic fields in the mid and high corona. However, the extreme intrinsic variability of this emission, the limited ability of most of the available existing instrumentation (until recently) to capture it, and the technical challenges involved have all contributed to its use being severely limited. The high dynamic-range spectropolarimetric snapshot imaging capability that is needed for radio coronal magnetography is now within reach. This has been enabled by the confluence of data from the Murchison Widefield Array (MWA), a Square Kilometre Array (SKA) precursor, and our unsupervised and robust polarization calibration and imaging software pipeline dedicated to the Sun—Polarimetry using the Automated Imaging Routine for Compact Arrays of the Radio Sun (P-AIRCARS). Here, we present the architecture and implementation details of P-AIRCARS. Although the present implementation of P-AIRCARS is tuned to the MWA, the algorithm itself can easily be adapted for future arrays, such as SKA1-Low. We hope and expect that P-AIRCARS will enable exciting new science with instruments like the MWA, and that it will encourage the wider use of radio imaging in the larger solar physics community.

     
    more » « less
  3. Abstract

    Weak Impulsive Narrowband Quiet Sun Emissions (WINQSEs) are a newly discovered class of radio emission from the solar corona. These emissions are characterized by their extremely impulsive, narrowband, and ubiquitous nature. We have systematically been working on their detailed characterization, including their strengths, morphologies, temporal characteristics, energies, etc. This work is the next step in this series and focuses on the spectral nature of WINQSEs. Given that their strength is only a few percent of the background solar emission, we have adopted an extremely conservative approach to reliably identify WINQSES. Only a handful of WINQSEs meet all of our stringent criteria. Their flux densities lie in the 20–50 Jy range and they have compact morphologies. For the first time, we estimate their bandwidths and find them to be less than 700 kHz, consistent with expectations based on earlier observations. Interestingly, we also find similarities between the spectral nature of WINQSEs and the solar radio spikes. This is consistent with our hypothesis that the WINQSEs are the weaker cousins of the type III radio bursts and are likely to be the low-frequency radio counterparts of the nanoflares, originally hypothesized as a possible explanation for coronal heating.

     
    more » « less
  4. Abstract

    In this work, we study a class of recently discovered meter-wave solar transients referred to as Weak Impulsive Narrowband Quiet Sun Emission (WINQSEs). Their strength is a few percent of the quiet Sun background and is characterized by their very impulsive, narrowband, and ubiquitous presence in quiet Sun regions. Mondal et al. (2020) hypothesized that these emissions might be the radio counterparts of nanoflares, and their potential significance warrants detailed studies. Here we present an analysis of data from an extremely quiet time and with improved methodology over the previous work. As before, we detect numerous WINQSEs, which we have used for their further characterization. Their key properties, namely, their impulsive nature and ubiquitous presence in the quiet Sun, are observed in these data as well. Interestingly, we also find some of the observed properties to differ significantly from the earlier work. With this demonstration of routine detection of WINQSEs, we hope to engender interest in the larger community to build a deeper understanding of WINQSEs.

     
    more » « less
  5. Abstract

    Understanding the dynamics of the quiet solar corona is important for answering key questions including the coronal heating problem. Multiple studies have suggested small-scale magnetic-reconnection events may play a crucial role. These reconnection events are expected to involve acceleration of electrons to suprathermal energies, which can then produce nonthermal observational signatures. However, due to the paucity of sensitive high-fidelity observations capable of probing these nonthermal signatures, most studies were unable to quantify their nonthermal nature. Here we use joint radio observations from the Very Large Array (VLA) and the Expanded Owens Valley Solar Array (EOVSA) to detect transient emissions from the quiet solar corona in the microwave (GHz) domain. While similar transients have been reported in the past, their nonthermal nature could not be adequately quantified due to the unavailability of broadband observations. Using a much larger bandwidth available now with the VLA and EOVSA, in this study, we are able to quantify the nonthermal energy associated with two of these transients. We find that the total nonthermal energy associated with some of these transients can be comparable to or even larger than the total thermal energy of a nanoflare, which underpins the importance of nonthermal energy in the total coronal energy budget.

     
    more » « less