Abstract BackgroundMarine symbioses are predominantly established through horizontal acquisition of microbial symbionts from the environment. However, genetic and functional comparisons of free-living populations of symbionts to their host-associated counterparts are sparse. Here, we assembled the first genomes of the chemoautotrophic gammaproteobacterial symbionts affiliated with the deep-sea snailAlviniconcha hesslerifrom two separate hydrothermal vent fields of the Mariana Back-Arc Basin. We used phylogenomic and population genomic methods to assess sequence and gene content variation between free-living and host-associated symbionts. ResultsOur phylogenomic analyses show that the free-living and host-associated symbionts ofA. hesslerifrom both vent fields are populations of monophyletic strains from a single species. Furthermore, genetic structure and gene content analyses indicate that these symbiont populations are differentiated by vent field rather than by lifestyle. ConclusionTogether, this work suggests that, despite the potential influence of host-mediated acquisition and release processes on horizontally transmitted symbionts, geographic isolation and/or adaptation to local habitat conditions are important determinants of symbiont population structure and intra-host composition.
more »
« less
Ecological differences among hydrothermal vent symbioses may drive contrasting patterns of symbiont population differentiation
Beneficial relationships between animals and microbial organisms (symbionts) are ubiquitous in nature. In the ocean, microbial symbionts are typically acquired from the environment and their composition across geographic locations is often shaped by adaptation to local habitat conditions. However, it is currently unknown how generalizable these patterns are across symbiotic systems that have contrasting ecological characteristics. To address this question, we compared symbiont population structure between deep-sea hydrothermal vent mussels and co-occurring but ecologically distinct snail species. Our analyses show that mussel symbiont populations are less partitioned by geography and do not demonstrate evidence for environmental adaptation. We posit that the mussel's mixotrophic feeding mode may lower its need to affiliate with locally adapted symbiont strains, while microhabitat stability and symbiont genomic mixing likely favors persistence of symbiont strains across geographic locations. Altogether, these findings further our understanding of the mechanisms shaping symbiont population structure in marine environmentally transmitted symbioses.
more »
« less
- Award ID(s):
- 1736932
- PAR ID:
- 10436082
- Editor(s):
- Wilkins, Laetitia G.
- Date Published:
- Journal Name:
- mSystems
- ISSN:
- 2379-5077
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Symbiont specificity, both at the phylotype and strain level, can have profound consequences for host ecology and evolution. However, except for insights from a few model symbiosis systems, the degree of partner fidelity and the influence of host versus environmental factors on symbiont composition are still poorly understood. Nutritional symbioses between invertebrate animals and chemosynthetic bacteria at deep-sea hydrothermal vents are examples of relatively selective associations, where hosts affiliate only with particular, environmentally acquired phylotypes of gammaproteobacterial or campylobacterial symbionts. In hydrothermal vent snails of the sister genera Alviniconcha and Ifremeria , this phylotype specificity has been shown to play a role in habitat distribution and partitioning among different holobiont species. However, it is currently unknown if fidelity goes beyond species-level associations and influences genetic structuring, connectivity, and habitat adaptation of holobiont populations. We used metagenomic analyses to assess sequence variation in hosts and symbionts and identify correlations with geographic and environmental factors. Our analyses indicate that host populations are not differentiated across an ∼800-km gradient, while symbiont populations are clearly structured between vent locations due to a combination of neutral and selective processes. Overall, these results suggest that host individuals flexibly associate with locally adapted strains of their specific symbiont phylotypes, which supports a long-standing but untested paradigm of the benefits of horizontal transmission. Symbiont strain flexibility in these snails likely enables host populations to exploit a range of habitat conditions, which might favor widespread genetic connectivity and ecological resilience unless physical dispersal barriers are present.more » « less
-
Rudi, Knut (Ed.)ABSTRACT Many female squids and cuttlefishes have a symbiotic reproductive organ called the accessory nidamental gland (ANG) that hosts a bacterial consortium involved with egg defense against pathogens and fouling organisms. While the ANG is found in multiple cephalopod families, little is known about the global microbial diversity of these ANG bacterial symbionts. We used 16S rRNA gene community analysis to characterize the ANG microbiome from different cephalopod species and assess the relationship between host and symbiont phylogenies. The ANG microbiome of 11 species of cephalopods from four families (superorder: Decapodiformes) that span seven geographic locations was characterized. Bacteria of classAlphaproteobacteria, Gammaproteobacteria, andFlavobacteriiawere found in all species, yet analysis of amplicon sequence variants by multiple distance metrics revealed a significant difference between ANG microbiomes of cephalopod families (weighted/unweighted UniFrac, Bray–Curtis,P= 0.001). Despite being collected from widely disparate geographic locations, members of the family Sepiolidae (bobtail squid) shared many bacterial taxa including (~50%)Opitutae(Verrucomicrobia) andRuegeria(Alphaproteobacteria) species. Furthermore, we tested for phylosymbiosis and found a positive correlation between host phylogenetic distance and bacterial community dissimilarity (Mantel testr= 0.7). These data suggest that closely related sepiolids select for distinct symbionts from similar bacterial taxa. Overall, the ANGs of different cephalopod species harbor distinct microbiomes and thus offer a diverse symbiont community to explore antimicrobial activity and other functional roles in host fitness. IMPORTANCEMany aquatic organisms recruit microbial symbionts from the environment that provide a variety of functions, including defense from pathogens. Some female cephalopods (squids, bobtail squids, and cuttlefish) have a reproductive organ called the accessory nidamental gland (ANG) that contains a bacterial consortium that protects eggs from pathogens. Despite the wide distribution of these cephalopods, whether they share similar microbiomes is unknown. Here, we studied the microbial diversity of the ANG in 11 species of cephalopods distributed over a broad geographic range and representing 15–120 million years of host divergence. The ANG microbiomes shared some bacterial taxa, but each cephalopod species had unique symbiotic members. Additionally, analysis of host–symbiont phylogenies suggests that the evolutionary histories of the partners have been important in shaping the ANG microbiome. This study advances our knowledge of cephalopod–bacteria relationships and provides a foundation to explore defensive symbionts in other systems.more » « less
-
Abstract Symbiosis often occurs between partners with distinct life history characteristics and dispersal mechanisms. Many bacterial symbionts have genomes comprising multiple replicons with distinct rates of evolution and horizontal transmission. Such differences might drive differences in population structure between hosts and symbionts and among the elements of the divided genomes of bacterial symbionts. These differences might, in turn, shape the evolution of symbiotic interactions and bacterial evolution. Here we use whole genome resequencing of a hierarchically structured sample of 191 strains ofSinorhizobium meliloticollected from 21 locations in southern Europe to characterize population structures of this bacterial symbiont, which forms a root nodule symbiosis with the host plantMedicago truncatula.S. melilotigenomes showed high local (within‐site) variation and little isolation by distance. This was particularly true for the two symbiosis elements, pSymA and pSymB, which have population structures that are similar to each other, but distinct from both the bacterial chromosome and the host plant. Given limited recombination on the chromosome, compared to the symbiosis elements, distinct population structures may result from differences in effective gene flow. Alternatively, positive or purifying selection, with little recombination, may explain distinct geographical patterns at the chromosome. Discordant population structure between hosts and symbionts indicates that geographically and genetically distinct host populations in different parts of the range might interact with genetically similar symbionts, potentially minimizing local specialization.more » « less
-
Abstract Sponges occur across diverse marine biomes and host internal microbial communities that can provide critical ecological functions. While strong patterns of host specificity have been observed consistently in sponge microbiomes, the precise ecological relationships between hosts and their symbiotic microbial communities remain to be fully delineated. In the current study, we investigate the relative roles of host population genetics and biogeography in structuring the microbial communities hosted by the excavating spongeCliona delitrix. A total of 53 samples, previously used to demarcate the population genetic structure ofC. delitrix,were selected from two locations in the Caribbean Sea and from eight locations across the reefs of Florida and the Bahamas. Microbial community diversity and composition were measured using Illumina‐based high‐throughput sequencing of the 16S rRNA V4 region and related to host population structure and geographic distribution. Most operational taxonomic units (OTUs) specific toCliona delitrixmicrobiomes were rare, while other OTUs were shared with congeneric hosts. Across a large regional scale (>1,000 km), geographic distance was associated with considerable variability of the sponge microbiome, suggesting a distance–decay relationship, but little impact over smaller spatial scales (<300 km) was observed. Host population structure had a moderate effect on the structure of these microbial communities, regardless of geographic distance. These results support the interplay between geographic, environmental, and host factors as forces determining the community structure of microbiomes associated withC. delitrix. Moreover, these data suggest that the mechanisms of host regulation can be observed at the population genetic scale, prior to the onset of speciation.more » « less
An official website of the United States government

