skip to main content

Title: Towards Safe Navigation Through Crowded Dynamic Environments
This paper proposes a novel neural network-based control policy to enable a mobile robot to navigate safety through environments filled with both static obstacles, such as tables and chairs, and dense crowds of pedestrians. The network architecture uses early fusion to combine a short history of lidar data with kinematic data about nearby pedestrians. This kinematic data is key to enable safe robot navigation in these uncontrolled, human-filled environments. The network is trained in a supervised setting, using expert demonstrations to learn safe navigation behaviors. A series of experiments in detailed simulated environments demonstrate the efficacy of this policy, which is able to achieve a higher success rate than either standard model-based planners or state-of-the-art neural network control policies that use only raw sensor data.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This article proposes a novel learning-based control policy with strong generalizability to new environments that enables a mobile robot to navigate autonomously through spaces filled with both static obstacles and dense crowds of pedestrians. The policy uses a unique combination of input data to generate the desired steering angle and forward velocity: a short history of lidar data, kinematic data about nearby pedestrians, and a subgoal point. The policy is trained in a reinforcement learning setting using a reward function that contains a novel term based on velocity obstacles to guide the robot to actively avoid pedestrians and move toward the goal. Through a series of 3-D simulated experiments with up to 55 pedestrians, this control policy is able to achieve a better balance between collision avoidance and speed (i.e., higher success rate and faster average speed) than state-of-the-art model-based and learning-based policies, and it also generalizes better to different crowd sizes and unseen environments. An extensive series of hardware experiments demonstrate the ability of this policy to directly work in different real-world environments with different crowd sizes with zero retraining. Furthermore, a series of simulated and hardware experiments show that the control policy also works in highly constrained static environments on a different robot platform without any additional training. Lastly, several important lessons that can be applied to other robot learning systems are summarized. 
    more » « less
  2. In this paper, we present a decentralized control approach based on a Nonlinear Model Predictive Control (NMPC) method that employs barrier certificates for safe navigation of multiple nonholonomic wheeled mobile robots in unknown environments with static and/or dynamic obstacles. This method incorporates a Learned Barrier Function (LBF) into the NMPC design in order to guarantee safe robot navigation, i.e., prevent robot collisions with other robots and the obstacles. We refer to our proposed control approach as NMPC-LBF. Since each robot does not have a priori knowledge about the obstacles and other robots, we use a Deep Neural Network (DeepNN) running in real-time on each robot to learn the Barrier Function (BF) only from the robot's LiDAR and odometry measurements. The DeepNN is trained to learn the BF that separates safe and unsafe regions. We implemented our proposed method on simulated and actual Turtlebot3 Burger robot(s) in different scenarios. The implementation results show the effectiveness of the NMPC-LBF method at ensuring safe navigation of the robots. 
    more » « less
  3. Barrier function-based inequality constraints are a means to enforce safety specifications for control systems. When used in conjunction with a convex optimization program, they provide a computationally efficient method to enforce safety for the general class of control-affine systems. One of the main assumptions when taking this approach is the a priori knowledge of the barrier function itself, i.e., knowledge of the safe set. In the context of navigation through unknown environments where the locally safe set evolves with time, such knowledge does not exist. This manuscript focuses on the synthesis of a zeroing barrier function characterizing the safe set based on safe and unsafe sample measurements, e.g., from perception data in navigation applications. Prior work formulated a supervised machine learning algorithm whose solution guaranteed the construction of a zeroing barrier function with specific level-set properties. However, it did not explore the geometry of the neural network design used for the synthesis process. This manuscript describes the specific geometry of the neural network used for zeroing barrier function synthesis, and shows how the network provides the necessary representation for splitting the state space into safe and unsafe regions. 
    more » « less
  4. null (Ed.)
    This work presents the design and autonomous navigation policy of the Resilient Micro Flyer, a new type of collision-tolerant robot tailored to fly through extremely confined environments and manhole-sized tubes. The robot maintains a low weight (<500g) and implements a combined rigid-compliant design through the integration of elastic flaps around its stiff collision-tolerant frame. These passive flaps ensure compliant collisions, contact sensing and smooth navigation in contact with the environment. Focusing on resilient autonomy, capable of running on resource-constrained hardware, we demonstrate the beneficial role of compliant collisions for the reliability of the onboard visual-inertial odometry and propose a safe navigation policy that exploits both collision-avoidance using lightweight time-of-flight sensing and adaptive control in response to collisions. The robot further realizes an explicit manhole navigation mode that exploits the direct mechanical feedback provided by the flaps and a special navigation strategy to self-align inside manholes with non-straight geometry. Comprehensive experimental studies are presented to evaluate, both individually and as a whole, how resilience is achieved based on the robot design and its navigation scheme. 
    more » « less
  5. This paper focuses on inverse reinforcement learning (IRL) to enable safe and efficient autonomous navigation in unknown partially observable environments. The objective is to infer a cost function that explains expert-demonstrated navigation behavior while relying only on the observations and state-control trajectory used by the expert. We develop a cost function representation composed of two parts: a probabilistic occupancy encoder, with recurrent dependence on the observation sequence, and a cost encoder, defined over the occupancy features. The representation parameters are optimized by differentiating the error between demonstrated controls and a control policy computed from the cost encoder. Such differentiation is typically computed by dynamic programming through the value function over the whole state space. We observe that this is inefficient in large partially observable environments because most states are unexplored. Instead, we rely on a closed-form subgradient of the cost-to-go obtained only over a subset of promising states via an efficient motion-planning algorithm such as A* or RRT. Our experiments show that our model exceeds the accuracy of baseline IRL algorithms in robot navigation tasks, while substantially improving the efficiency of training and test-time inference. 
    more » « less