Abstract. Knowledge of past ice sheet configurations is useful for informing projections of future ice sheet dynamics and for calibrating ice sheet models. The topology of grounding line retreat in the Ross Sea sector of Antarctica has been much debated, but it has generally been assumed that the modern ice sheet is as small as it has been for more than 100 000 years (Conway et al., 1999; Lee et al., 2017; Lowry et al., 2019; McKay et al., 2016; Scherer et al., 1998). Recent findings suggest that the West Antarctic Ice Sheet (WAIS) grounding line retreated beyond its current location earlier in the Holocene and subsequently readvanced to reach its modern position (Bradley et al., 2015; Kingslake et al., 2018). Here, we further constrain the post-LGM (Last Glacial Maximum) grounding line retreat and readvance in the Ross Sea sector using a two-phase model of radiocarbon input and decay in subglacial sediments from six sub-ice sampling locations. In addition, we reinterpret high basal temperature gradients, measured previously at three sites in this region (Engelhardt, 2004), which we explain as resulting from recent ice shelf re-grounding accompanying grounding line readvance. Atone location – Whillans Subglacial Lake (SLW) – for which a sedimentporewater chemistry profile is known, we estimate the grounding linereadvance by simulating ionic diffusion. Collectively, our analyses indicate that the grounding line retreated over SLW 4300-2500+1500 years ago, and over sites on Whillans Ice Stream (WIS), Kamb Ice Stream (KIS), and Bindschadler Ice Stream (BIS) 4700-2300+1500, 1800-700+2700, and 1700-600+2800 years ago, respectively. The grounding line only recently readvanced back over those sites 1100-100+200, 1500-200+500, 1000-300+200, and 800±100 years ago for SLW, WIS, KIS, and BIS, respectively. The timing of grounding line retreat coincided with a warm period in the mid-Holocene to late Holocene. Conversely, grounding line readvance is coincident with cooling climate in the last 1000–2000 years. Our estimates for the timing of grounding line retreat and readvance are also consistent with relatively low carbon-to-nitrogen ratios measured in our subglacial sediment samples (suggesting a marine source of organic matter) and with the lack of grounding zone wedges in front of modern grounding lines. Based on these results, we propose that the Siple Coast grounding line motions in the mid-Holocene to late Holocene were primarily driven by relatively modest changes in regional climate, rather than by ice sheet dynamics and glacioisostatic rebound, as hypothesized previously (Kingslake et al., 2018).
more »
« less
‘Stable’ and ‘unstable’ are not useful descriptions of marine ice sheets in the Earth's climate system
Investigations of the time-dependent behavior of marine ice sheets and their sensitivity to basal conditions require numerical models because existing theoretical analyses focus only on steady-state configurations primarily with a power-law basal shear stress. Numerical results indicate that the choice of the sliding law strongly affects ice-sheet dynamic behavior. Although observed or simulated grounding-line retreat is typically interpreted as an indication of marine ice sheet instability introduced by Weertman (1974), this (in)stability is a characteristic of the ice sheet's steady states – not time-variant behavior. To bridge the gap between theoretical and numerical results, we develop a framework to investigate grounding line dynamics with generalized basal and lateral stresses (i.e. the functional dependencies are not specified). Motivated by observations of internal variability of the Southern Ocean conditions we explore the grounding-line response to stochastic variability. We find that adding stochastic variability to submarine melt rates that produced stable steady-state configurations leads to intermittently advancing and retreating grounding lines. They can also retreat in an unstoppable manner on time-scales significantly longer than the stochastic correlation time-scales. These results suggest that at any given time of their evolution, the transient behavior of marine ice sheets cannot be described in terms of ‘stable’ or ‘unstable’.
more »
« less
- Award ID(s):
- 2218463
- PAR ID:
- 10436317
- Date Published:
- Journal Name:
- Journal of Glaciology
- ISSN:
- 0022-1430
- Page Range / eLocation ID:
- 1 to 17
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Adélie‐George V Land in East Antarctica, encompassing the vast Wilkes Subglacial Basin, has a configuration that could be prone to ice sheet instability: the basin's retrograde bed slope could make its marine terminating glaciers vulnerable to warm seawater intrusion and irreversible retreat under predicted climate forcing. However, future projections are uncertain, due in part to limited subglacial observations near the grounding zone. Here, we develop a novel statistical approach to characterize subglacial conditions from radar sounding observations. Our method reveals intermixed frozen and thawed bed within 100 km of the grounding‐zone near the Wilkes Subglacial Basin outflow, and enables comparisons to ice sheet model‐inferred thermal states. The signs of intermixed or near thawed conditions raises the possibility that changes in basal thermal state could impact the stability of Adélie‐George V Land, adding to the region's potentially vulnerable topographic configuration and sensitivity to ocean forcing driven grounding line retreat.more » « less
-
Grounding lines exist where land-based glacial ice flows on to a body of water. Accurately modelling grounding-line migration at the ice–ocean interface is essential for estimating future ice-sheet mass change. On the interior of ice sheets, the shores of subglacial lakes are also grounding lines. Grounding-line positions are sensitive to water volume changes such as sea-level rise or subglacial-lake drainage. Here, we introduce numerical methods for simulating grounding-line dynamics in the marine ice sheet and subglacial-lake settings. Variational inequalities arise from contact conditions that relate normal stress, water pressure and velocity at the base. Existence and uniqueness of solutions to these problems are established using a minimisation argument. A penalty method is used to replace the variational inequalities with variational equations that are solved using a finite-element method. We illustrate the grounding-line response to tidal cycles in the marine ice-sheet problem and filling–draining cycles in the subglacial-lake problem. We introduce two computational benchmarks where the known lake volume change is used to measure the accuracy of the numerical method.more » « less
-
The variability of the Antarctic and Greenland ice sheets occurs on various timescales and is important for projections of sea level rise; however, there are substantial uncertainties concerning future ice-sheet mass changes. In this Review, we explore the degree to which short-term fluctuations and extreme glaciological events reflect the ice sheets’ long-term evolution and response to ongoing climate change. Short-term (decadal or shorter) variations in atmospheric or oceanic conditions can trigger amplifying feedbacks that increase the sensitivity of ice sheets to climate change. For example, variability in ocean-induced and atmosphere-induced melting can trigger ice thinning, retreat and/or collapse of ice shelves, grounding-line retreat, and ice flow acceleration. The Antarctic Ice Sheet is especially prone to increased melting and ice sheet collapse from warm ocean currents, which could be accentuated with increased climate variability. In Greenland both high and low melt anomalies have been observed since 2012, highlighting the influence of increased interannual climate variability on extreme glaciological events and ice sheet evolution. Failing to adequately account for such variability can result in biased projections of multi-decadal ice mass loss. Therefore, future research should aim to improve climate and ocean observations and models, and develop sophisticated ice sheet models that are directly constrained by observational records and can capture ice dynamical changes across various timescales.more » « less
-
Using observations of basal topography, ice thickness and modern accumulation rates, we use theory and a dynamic flowline model to examine the sensitivity of Antarctica's Foundation Ice Stream to changes in sea level, accumulation and buttressing at the grounding line. Our sensitivity studies demonstrate that the steep, upward-sloping basal topography inland from the grounding line serves to stabilize retreat of the ice stream, while the upward-sloping submarine topography downstream from the grounding line creates the potential for significant advance under conditions of modest sea-level lowering and/or increased accumulation rate. Extrapolating from Foundation Ice Stream, many nearby Weddell Sea sector ice streams are in a similar configuration, suggesting that the historical and projected responses of this sector's ice streams may contrast with those in the Amundsen or Ross Sea sectors. This work reaffirms that the greatest concerns for rapid West Antarctic Ice Sheet (WAIS) retreat are locations of reverse slopes, muted basal topography and limited lateral support.more » « less