skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unveiling the Landscape of Operating System Vulnerabilities
Operating systems play a crucial role in computer systems, serving as the fundamental infrastructure that supports a wide range of applications and services. However, they are also prime targets for malicious actors seeking to exploit vulnerabilities and compromise system security. This is a crucial area that requires active research; however, OS vulnerabilities have not been actively studied in recent years. Therefore, we conduct a comprehensive analysis of OS vulnerabilities, aiming to enhance the understanding of their trends, severity, and common weaknesses. Our research methodology encompasses data preparation, sampling of vulnerable OS categories and versions, and an in-depth analysis of trends, severity levels, and types of OS vulnerabilities. We scrape the high-level data from reliable and recognized sources to generate two refined OS vulnerability datasets: one for OS categories and another for OS versions. Our study reveals the susceptibility of popular operating systems such as Windows, Windows Server, Debian Linux, and Mac OS. Specifically, Windows 10, Windows 11, Android (v11.0, v12.0, v13.0), Windows Server 2012, Debian Linux (v10.0, v11.0), Fedora 37, and HarmonyOS 2, are identified as the most vulnerable OS versions in recent years (2021–2022). Notably, these vulnerabilities exhibit a high severity, with maximum CVSS scores falling into the 7–8 and 9–10 range. Common vulnerability types, including CWE-119, CWE-20, CWE-200, and CWE-787, are prevalent in these OSs and require specific attention from OS vendors. The findings on trends, severity, and types of OS vulnerabilities from this research will serve as a valuable resource for vendors, security professionals, and end-users, empowering them to enhance OS security measures, prioritize vulnerability management efforts, and make informed decisions to mitigate risks associated with these vulnerabilities.  more » « less
Award ID(s):
1828811
PAR ID:
10436345
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Future Internet
Volume:
15
Issue:
7
ISSN:
1999-5903
Page Range / eLocation ID:
248
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Mobile devices encroach on almost every part of our lives, including work and leisure, and contain a wealth of personal and sensitive information. It is, therefore, imperative that these devices uphold high security standards. A key aspect is the security of the underlying operating system. In particular, Android plays a critical role due to being the most dominant platform in the mobile ecosystem with more than one billion active devices and due to its openness, which allows vendors to adopt and customize it. Similar to other platforms, Android maintains security by providing monthly security patches and announcing them via the Android security bulletin. To absorb this information successfully across the Android ecosystem, impeccable coordination by many different vendors is required. In this paper, we perform a comprehensive study of 3,171 Android-related vulnerabilities and study to which degree they are reflected in the Android security bulletin, as well as in the security bulletins of three leading vendors: Samsung, LG, and Huawei. In our analysis, we focus on the metadata of these security bulletins (e.g., timing, affected layers, severity, and CWE data) to better understand the similarities and differences among vendors. We find that (i) the studied vendors in the Android ecosystem have adopted different structures for vulnerability reporting, (ii) vendors are less likely to react with delay for CVEs with Android Git repository references, (iii) vendors handle Qualcomm-related CVEs different from the rest of external layer CVEs. 
    more » « less
  2. Automated detection of vulnerabilities and weaknesses in binary code is a critical need at the frontier of cybersecurity research. Cybersecurity static-analysis tools aim to detect and enumerate vulnerabilities and weaknesses. Two popular tools are CVE Binary Tool (cve-bin-tool) and cwechecker. Cve-bin-tool reports vulnerabilities using Common Vulnerabilities and Exposures (CVE) whereas cwe-checker reports weaknesses using Common Weakness Enumeration (CWE). Despite widespread use, the consistency with which these tools report vulnerabilities and weaknesses (herein, “findings”) was unaddressed. We conducted a systematic investigation of 660 unique binaries taken from a Kali Linux distribution, evaluated each binary with multiple versions of the static-analysis tools, and investigated how the findings changed according to the version of the static-analysis tool used. We expected some variation in findings commensurate with the software-development life cycle. However, we were surprised by the number and magnitude of the changes in findings reported across versions. New versions gave new answers. 
    more » « less
  3. Commodity operating system (OS) kernels, such as Windows, Mac OS X, Linux, and FreeBSD, are susceptible to numerous security vulnerabilities. Their monolithic design gives successful attackers complete access to all application data and system resources. Shielding systems such as InkTag, Haven, and Virtual Ghost protect sensitive application data from compromised OS kernels. However, such systems are still vulnerable to side-channel attacks. Worse yet, compromised OS kernels can leverage their control over privileged hardware state to exacerbate existing side channels; recent work has shown that a compromised OS kernel can steal entire documents via side channels. This paper presents defenses against page table and last-level cache (LLC) side-channel attacks launched by a compromised OS kernel. Our page table defenses restrict the OS kernel’s ability to read and write page table pages and defend against page allocation attacks, and our LLC defenses utilize the Intel Cache Allocation Technology along with memory isolation primitives. We proto- type our solution in a system we call Apparition, building on an optimized version of Virtual Ghost. Our evaluation shows that our side-channel defenses add 1% to 18% (with up to 86% for one application) overhead to the optimized Virtual Ghost (relative to the native kernel) on real-world applications. 
    more » « less
  4. With the increase in popularity of operating systems like macOS and Chrome OS, creating non-mobile applications that run cross-platform is becoming a challenge for developers all over the world [1]. It is costly to create non-Windows versions of applications since the Operating Systems (OS) differ in architecture and implementation. Many creators from various organizations choose different routes for increasing application compatibility but are not always willing to pay the overhead of developing the same application on another platform. As a result, consumers are stuck with not being able to use the software they need and end up resorting to workarounds ranging from running virtual machines to parallel booting the operating system. Wine is a compatibility layer capable of running Windows applications on several POSIX-compliant operating systems, such as Linux, macOS, & BSD free of cost [2]. It is an excellent way to run Windows applications on macOS and other Linux machines without installing a resource intensive virtual machine or restarting the machine to dual boot. Wine has been in active use since 1993. Since then, it has been adopted by many large companies and integrated into their products, including Borland, Google, IBM and Oracle [3]. This paper describes how a National Science Foundation (NSF) funded project experienced a need to be able to run a Windows-only program on Macs or Chromebooks and explains how Wine may be used to overcome a similar OS-limiting challenge. 
    more » « less
  5. File systems have been developed for decades with the security-critical foundation provided by operating systems. However, they are still vulnerable to malware attacks and software defects. In this paper, we undertake the first attempt to systematically understand the security vulnerabilities in various file systems. We conduct an empirical study of 157 real cases reported in Common Vulnerabilities and Exposures (CVE). We characterize the file system vulnerabilities in different dimensions that include the common vulnerabilities leveraged by adversaries to initiate their attacks, their exploitation procedures, root causes, consequences, and mitigation approaches. We believe the insights derived from this study have broad implications related to the further enhancement of the security aspect of file systems, and the associated vulnerability detection tools. 
    more » « less