skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigation of the Bimodal Leaching Response of RAM Chip Gold Fingers in Ammonia Thiosulfate Solution
Oxidative thiosulfate leaching using Cu(II)-NH3 has been explored for both mining and recycling applications as a promising method for Au extraction. This study seeks to understand the dissolution behavior of Au from waste RAM chips using a Cu(II)-NH3-S2O3 solution. In the course of this work, bimodal leaching and Au loss were observed in a manner that we have not identified in the literature. Identification of the existence of a specific Au-Ni-Cu lamellar structure in the gold fingers from RAM chips by scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDS) revealed the possibility of interference between Au recovery and the existence of Cu and Ni. During leaching, the co-extraction of Ni was found to predict a negative impact on the Au recovery, as a result of chemical interactions from the Au-Ni-Cu interlayer. Decopperization as a pretreatment was found necessary to remove the pre-existing Cu and promote Au leaching. As part of the study parameters, such as Cu(II) concentration, aeration rates, thiosulfate and ammonia concentrations, particle sizes, and temperatures, were investigated. A satisfactory Au recovery of 98% was achieved using 50 mM Cu(II), 120 mL/min aeration rate, 0.5 M (NH3)2S2O3, and 0.75 M NH4OH (i.e., AT/AH ratio of 0.67) for 4 h residence time at room temperature (25 °C). However, there were several high recoveries prior to Au loss from the lixiviant. It was revealed that the main cause of lower Au recovery was due to a precipitation or cementation reaction that included a sulfur species formation. Because of the bimodal leaching, a composite response comprised of the time to Au loss and maximum recovery was developed, termed leaching proclivity, to facilitate statistical analysis. Furthermore, this study explores the interactions between Au-Ni-Cu and provides suggestions for improving Au thiosulfate leaching under the interference of co-existing metals from waste PCB materials.  more » « less
Award ID(s):
2044719
PAR ID:
10436443
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Materials
Volume:
16
Issue:
14
ISSN:
1996-1944
Page Range / eLocation ID:
4940
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The leaching of Cu in ammoniacal solutions has proven an efficient method to recover Cu from waste printed circuit boards (WPCBs) that has used by many researchers over the last two decades. This study investigates the feasibility of a counter-current leaching circuit that would be coupled with an electrowinning (EW) cell. To accomplish this objective, the paper is divided into three parts. In Part 1, a leaching kinetic framework is developed from a set of experiments that were designed and conducted using end-of-life waste RAM chips as feed sources and Cu(II)-ammoniacal solution as the lixiviant. Various processing parameters, such as particle size, stirring rates, initial Cu(II) concentrations, and temperatures, were evaluated for their effects on the Cu recovery and the leaching rate. It was found that the particle size and initial Cu(II) concentration were the two most important factors in Cu leaching. Using a 1.2 mm particle size diameter and 40 g/L of initial Cu(II) concentration, a maximum Cu recovery of 96% was achieved. The Zhuravlev changing-concentration model was selected to develop the empirically fitted kinetic coefficients. In Part 2, kinetic data were adapted into a leaching function suitable for continuously stirred tank reactors. This was achieved via using the coefficients from the Zhuravlev model and adapting them to the Jander constant concentration model for use in the counter-current circuit model. Part 3 details the development of a counter-current circuit model based on the relevant kinetic model, and the circuit performance was modeled to provide a tool that would allow the exploration of maximum copper recovery whilst minimizing the Cu(II) reporting to electrowinning. A 4-stage counter-current circuit was modeled incorporating a feed of 35 g/L of Cu(II), achieving a 4.12 g/L Cu(II) output with 93% copper recovery. 
    more » « less
  2. The rapidly accumulating amounts of waste electrical and electronic equipment (WEEE) is one of the biggest environmental concerns in modern societies, and this problem will be further accelerated in the future. The use of supercritical CO2 (scCO2) mixed with acids has been proposed as a greener solvent system compared to conventional cyanide and aqua regia solvents, however, the mechanisms of scCO2 in metal extraction from WEEE are still poorly understood. Thus, this study focused on the physical, structural, and chemical interactions between scCO2/acid solvents and complex layered components in waste printed circuit boards (WPCBs), one of the common WEEEs. Our study showed that the use of scCO2-based pretreatment allows faster leaching of metals including copper (Cu) in the subsequent hydrometallurgical process using H2SO4 and H2O2, while allowing gold (Au) recovery as hydrometallurgically delaminated solids. This enhancement is due to the selective leaching of Ni and unique inner porous structures created by ScCO2/acid treatment via dissolving the Ca-silicate-bearing fiberglass within the WPCB. Thus, the scCO2-based pretreatment of WPCBs shows a multifaceted green chemistry potential relating to the reduction in solvent usage and targeted recovery of Au prior to shredding or grinding that would reduce any loss or dilution of Au in the subsequent waste stream. 
    more » « less
  3. Abstract Current U.S. policies aim to establish domestic supply chains of critical minerals for the energy transition. The Iron Creek deposit in the Idaho cobalt belt (ICB) is one of the most promising cobalt (Co) targets. Our case study illustrates the importance of mineralogy in strategic evaluations of critical mineral potential. Most of the Co at Iron Creek occurs as Fe substitution in pyrite, with lattice-bound and inclusion-hosted Ag, As, Bi, Ni, Pb, Se, Te ± trace Au and Sb. Cobalt also occurs in minor cattierite-vaesite. The Co minerals are intergrown with Co-poor chalcopyrite hosting Cu ± minor In and Zn. Worldwide, most Co is recovered from deposits mineralogically distinct from the ICB, and the United States currently lacks infrastructure to recover this Co and its associated metals. ICB ore minerals could be processed by autoclave, roaster, smelter, bioleach, or heap leach. Recovery of the Ag, As, Au, Bi, In, Pb, Se, Te, and Zn would be costly by autoclave, and construction of a custom smelter for ICB ores is likely uneconomic, so these elements would become waste irrespective of criticality. The Co-Fe and Co-As sulfide minerals are most suitable for Co and Ni recovery by a hydrometallurgical autoclave process, with potential pretreatment of cobaltiferous pyrite/arsenopyrite in an inert-atmosphere roaster, in new domestic or anticipated international facilities. The ICB is the second largest known Co resource in the United States. Consideration of ore mineralogy in the ICB is essential in strategies for domestic production. 
    more » « less
  4. An investigation has been carried out to understand the solution chemistry of the Cu-NH−-SO4−2 system, focusing on the effect of pH on the solubility of copper in the solution and maximizing the Cu(I):Cu(II) ratio. A Pourbaix diagram for the Cu-N-S system has also been created using the HSC Chemistry software for a wide range of Cu-NH3 species, unlike most other studies that focused only on Cu(NH3)42+ and Cu(NH3)52+ (Cu(II)) as the dominant species. The Pourbaix diagram demonstrated that the Cu(I) exists as Cu(NH3)2+, while the Cu(II) species are present in the system as Cu(NH3)42+ and Cu(NH3)52+, depending upon the Eh and pH of the solution. Copper precipitation was observed in the electrolyte at pH values less than 8.0, and the precipitation behavior increased as the pH became acidic. The highest Cu(I):Cu(II) ratio was observed at higher pH values of 10.05 due to the higher solubility of copper at higher alkaline pH. The maximum Cu(II) concentration can be achieved at 4.0 M NH4OH and 0.76 M (NH4)2SO4. In the case of low pH, the highest Cu(I):Cu(II) ratio obtained was 0.91 against the 4.0 M and 0.25 M concentrations of NH4OH and (NH4)2SO4, respectively. Meanwhile, at high pH, the maximum Cu(I):Cu(II) ratio was 15.11 against the 0.25 M (NH4)2SO4 and 4.0 M NH4OH. Furthermore, the low pH experiments showed the equilibrium constant (K) K < 1, and the high pH experiments demonstrated K > 1, which justified the lower and higher copper concentrations in the solution, respectively. 
    more » « less
  5. Icosahedral quasicrystals (i-phases) in the Al–Cu–Fe system are of great interest because of their perfect quasicrystalline structure and natural occurrences in the Khatyrka meteorite. The natural quasicrystal of composition Al 62 Cu 31 Fe 7 , referred to as i-phase II, is unique because it deviates significantly from the stability field of i-phase and has not been synthesized in a laboratory setting to date. Synthetic i-phases formed in shock-recovery experiments present a novel strategy for exploring the stability of new quasicrystal compositions and prove the impact origin of natural quasicrystals. In this study, an Al–Cu–W graded density impactor (GDI, originally manufactured as a ramp-generating impactor but here used as a target) disk was shocked to sample a full range of Al/Cu starting ratios in an Fe-bearing 304 stainless-steel target chamber. In a strongly deformed region of the recovered sample, reactions between the GDI and the steel produced an assemblage of co-existing Al 61.5 Cu 30.3 Fe 6.8 Cr 1.4 i-phase II + stolperite (β, AlCu) + khatyrkite (θ, Al 2 Cu), an exact match to the natural i-phase II assemblage in the meteorite. In a second experiment, the continuous interface between the GDI and steel formed another more Fe-rich quinary i-phase (Al 68.6 Fe 14.5 Cu 11.2 Cr 4 Ni 1.8 ), together with stolperite and hollisterite (λ, Al 13 Fe 4 ), which is the expected assemblage at phase equilibrium. This study is the first laboratory reproduction of i-phase II with its natural assemblage. It suggests that the field of thermodynamically stable icosahedrite (Al 63 Cu 24 Fe 13 ) could separate into two disconnected fields under shock pressure above 20 GPa, leading to the co-existence of Fe-rich and Fe-poor i-phases like the case in Khatyrka. In light of this, shock-recovery experiments do indeed offer an efficient method of constraining the impact conditions recorded by quasicrystal-bearing meteorite, and exploring formation conditions and mechanisms leading to quasicrystals. 
    more » « less