skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2044719

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An investigation has been carried out to understand the solution chemistry of the Cu-NH−-SO4−2 system, focusing on the effect of pH on the solubility of copper in the solution and maximizing the Cu(I):Cu(II) ratio. A Pourbaix diagram for the Cu-N-S system has also been created using the HSC Chemistry software for a wide range of Cu-NH3 species, unlike most other studies that focused only on Cu(NH3)42+ and Cu(NH3)52+ (Cu(II)) as the dominant species. The Pourbaix diagram demonstrated that the Cu(I) exists as Cu(NH3)2+, while the Cu(II) species are present in the system as Cu(NH3)42+ and Cu(NH3)52+, depending upon the Eh and pH of the solution. Copper precipitation was observed in the electrolyte at pH values less than 8.0, and the precipitation behavior increased as the pH became acidic. The highest Cu(I):Cu(II) ratio was observed at higher pH values of 10.05 due to the higher solubility of copper at higher alkaline pH. The maximum Cu(II) concentration can be achieved at 4.0 M NH4OH and 0.76 M (NH4)2SO4. In the case of low pH, the highest Cu(I):Cu(II) ratio obtained was 0.91 against the 4.0 M and 0.25 M concentrations of NH4OH and (NH4)2SO4, respectively. Meanwhile, at high pH, the maximum Cu(I):Cu(II) ratio was 15.11 against the 0.25 M (NH4)2SO4 and 4.0 M NH4OH. Furthermore, the low pH experiments showed the equilibrium constant (K) K < 1, and the high pH experiments demonstrated K > 1, which justified the lower and higher copper concentrations in the solution, respectively. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. The leaching of Cu in ammoniacal solutions has proven an efficient method to recover Cu from waste printed circuit boards (WPCBs) that has used by many researchers over the last two decades. This study investigates the feasibility of a counter-current leaching circuit that would be coupled with an electrowinning (EW) cell. To accomplish this objective, the paper is divided into three parts. In Part 1, a leaching kinetic framework is developed from a set of experiments that were designed and conducted using end-of-life waste RAM chips as feed sources and Cu(II)-ammoniacal solution as the lixiviant. Various processing parameters, such as particle size, stirring rates, initial Cu(II) concentrations, and temperatures, were evaluated for their effects on the Cu recovery and the leaching rate. It was found that the particle size and initial Cu(II) concentration were the two most important factors in Cu leaching. Using a 1.2 mm particle size diameter and 40 g/L of initial Cu(II) concentration, a maximum Cu recovery of 96% was achieved. The Zhuravlev changing-concentration model was selected to develop the empirically fitted kinetic coefficients. In Part 2, kinetic data were adapted into a leaching function suitable for continuously stirred tank reactors. This was achieved via using the coefficients from the Zhuravlev model and adapting them to the Jander constant concentration model for use in the counter-current circuit model. Part 3 details the development of a counter-current circuit model based on the relevant kinetic model, and the circuit performance was modeled to provide a tool that would allow the exploration of maximum copper recovery whilst minimizing the Cu(II) reporting to electrowinning. A 4-stage counter-current circuit was modeled incorporating a feed of 35 g/L of Cu(II), achieving a 4.12 g/L Cu(II) output with 93% copper recovery. 
    more » « less
  3. Oxidative thiosulfate leaching using Cu(II)-NH3 has been explored for both mining and recycling applications as a promising method for Au extraction. This study seeks to understand the dissolution behavior of Au from waste RAM chips using a Cu(II)-NH3-S2O3 solution. In the course of this work, bimodal leaching and Au loss were observed in a manner that we have not identified in the literature. Identification of the existence of a specific Au-Ni-Cu lamellar structure in the gold fingers from RAM chips by scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDS) revealed the possibility of interference between Au recovery and the existence of Cu and Ni. During leaching, the co-extraction of Ni was found to predict a negative impact on the Au recovery, as a result of chemical interactions from the Au-Ni-Cu interlayer. Decopperization as a pretreatment was found necessary to remove the pre-existing Cu and promote Au leaching. As part of the study parameters, such as Cu(II) concentration, aeration rates, thiosulfate and ammonia concentrations, particle sizes, and temperatures, were investigated. A satisfactory Au recovery of 98% was achieved using 50 mM Cu(II), 120 mL/min aeration rate, 0.5 M (NH3)2S2O3, and 0.75 M NH4OH (i.e., AT/AH ratio of 0.67) for 4 h residence time at room temperature (25 °C). However, there were several high recoveries prior to Au loss from the lixiviant. It was revealed that the main cause of lower Au recovery was due to a precipitation or cementation reaction that included a sulfur species formation. Because of the bimodal leaching, a composite response comprised of the time to Au loss and maximum recovery was developed, termed leaching proclivity, to facilitate statistical analysis. Furthermore, this study explores the interactions between Au-Ni-Cu and provides suggestions for improving Au thiosulfate leaching under the interference of co-existing metals from waste PCB materials. 
    more » « less
  4. Due to the rapid development of electronic devices and their shortened lifespans, waste electrical and electronic equipment (WEEE), or E-waste, is regarded as one of the most fast-growing wastes. Among the categories of E-waste, waste printed circuit boards (WPCBs) are considered the most complex waste materials, owing to their various constitutes, such as plastics, capacitors, wiring, and metal plating. To date, a variety of processing technologies have been developed and studied. However, due to the heterogeneous nature of WPCBs, a thorough study on both material characterization and physical separation was needed to provide a better understanding in material handling, as well as to prepare a suitable feedstock prior to the downstream chemical process. In the present study, integrated size and density separations were performed to understand the liberation of contained metals, particularly Cu and Au, from the plastic substrates. The separation performance was evaluated by the elemental concentration, distribution, and enrichment ratio of valuable metals in different size and density fractions. Further, SEM-EDS on the density separation products was carried out to characterize the surface morphology, elemental mapping, and quantified elemental contents. Moreover, thermo-gravimetric properties of waste PCBs were investigated by TGA, in order to understand the effect of temperature on volatile and combustible fractions during the thermal processing. 
    more » « less