Abstract Constraining the distribution of small-scale structure in our universe allows us to probe alternatives to the cold dark matter paradigm. Strong gravitational lensing offers a unique window into small dark matter halos (<1010M⊙) because these halos impart a gravitational lensing signal even if they do not host luminous galaxies. We create large data sets of strong lensing images with realistic low-mass halos, Hubble Space Telescope (HST) observational effects, and galaxy light from HST’s COSMOS field. Using a simulation-based inference pipeline, we train a neural posterior estimator of the subhalo mass function (SHMF) and place constraints on populations of lenses generated using a separate set of galaxy sources. We find that by combining our network with a hierarchical inference framework, we can both reliably infer the SHMF across a variety of configurations and scale efficiently to populations with hundreds of lenses. By conducting precise inference on large and complex simulated data sets, our method lays a foundation for extracting dark matter constraints from the next generation of wide-field optical imaging surveys.
more »
« less
Pushing the limits of detectability: Mixed dark matter from strong gravitational lenses
Abstract One of the frontiers for advancing what is known about dark matter lies in using strong gravitational lenses to characterize the population of the smallest dark matter halos. There is a large volume of information in strong gravitational lens images—the question we seek to answer is to what extent we can refine this information. To this end, we forecast the detectability of a mixed warm and cold dark matter scenario using the anomalous flux ratio method from strong gravitational lensed images. The halo mass function of the mixed dark matter scenario is suppressed relative to cold dark matter but still predicts numerous low-mass dark matter halos relative to warm dark matter. Since the strong lensing signal receives a contribution from a range of dark matter halo masses and since the signal is sensitive to the specific configuration of dark matter halos, not just the halo mass function, degeneracies between different forms of suppression in the halo mass function, relative to cold dark matter, can arise. We find that, with a set of lenses with different configurations of the main deflector and hence different sensitivities to different mass ranges of the halo mass function, the different forms of suppression of the halo mass function between the warm dark matter model and the mixed dark matter model can be distinguished with 40 lenses with Bayesian odds of 30:1.
more »
« less
- PAR ID:
- 10436769
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- ISSN:
- 0035-8711
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The mass-concentration relation of dark matter halos reflects the assembly history of objects in hierarchical structure formation scenarios, and depends on fundamental quantities in cosmology such as the slope of the primordial matter power-spectrum. This relation is unconstrained by observations on sub-galactic scales. We derive the first measurement of the mass-concentration relation using the image positions and flux ratios from eleven quadruple-image strong gravitational lenses (quads) in the mass range 106 − 1010M⊙, assuming cold dark matter. We model both subhalos and line of sight halos, finite-size background sources, and marginalize over nuisance parameters describing the lens macromodel. We also marginalize over the the logarithmic slope and redshift evolution of the mass-concentration relation, using flat priors that encompass the range of theoretical uncertainty in the literature. At z = 0, we constrain the concentration of 108M⊙ halos $$c=12_{-5}^{+6}$$ at $$68 \%$$ CI, and $$c=12_{-9}^{+15}$$ at $$95 \%$$ CI. For a 107M⊙ halo, we obtain $$68 \%$$ ($$95 \%$$) constraints $$c=15_{-8}^{+9}$$ ($$c=15_{-11}^{+18}$$), while for 109M⊙ halos $$c=10_{-4}^{+7}$$ ($$c=10_{-7}^{+14}$$). These results are consistent with the theoretical predictions from mass-concentration relations in the literature, and establish strong lensing by galaxies as a powerful probe of halo concentrations on sub-galactic scales across cosmological distance.more » « less
-
ABSTRACT Strong gravitational lensing provides a purely gravitational means to infer properties of dark matter haloes and thereby constrain the particle nature of dark matter. Strong lenses sometimes appear as four lensed images of a background quasar accompanied by spatially resolved emission from the quasar host galaxy encircling the main deflector (lensed arcs). We present methodology to simultaneously reconstruct lensed arcs and relative image magnifications (flux ratios) in the presence of full populations of subhaloes and line-of-sight haloes. To this end, we develop a new approach for multiplane ray tracing that accelerates lens mass and source light reconstruction by factors of $$\sim\!\! 100\!\!-\!\!1000$$. Using simulated data, we show that simultaneous reconstruction of lensed arcs and flux ratios isolates small-scale perturbations to flux ratios by dark matter substructure from uncertainties associated with the main deflector mass profile on larger angular scales. Relative to analyses that use only image positions and flux ratios to constrain the lens model, incorporating arcs strengthens likelihood ratios penalizing warm dark matter with a suppression scale $$m_{\rm {hm}} / {\rm M}_{\odot }$$ in the ranges of $$\left[10^7 \!\!-\!\! 10^{7.5}\right]$$, $$\left[10^{7.5} \!\!-\!\! 10^{8}\right]$$, $$\left[10^8 \!\!-\!\! 10^{8.5}\right]$$, and $$\left[10^{8.5} \!\!-\!\! 10^{9}\right]$$ by factors of 1.3, 2.5, 5.6, and 13.1, respectively, for a cold dark matter ground truth. The 95 per cent exclusion limit improves by 0.5 dex in $$\log _{10} m_{\rm {hm}}$$. The enhanced sensitivity to low-mass haloes enabled by these methods pushes the observational frontier of substructure lensing to the threshold of galaxy formation, enabling stringent tests of any theory that alters the properties of dark matter haloes.more » « less
-
ABSTRACT Using high-resolution cosmological radiation-hydrodynamic (RHD) simulations (thesan-hr), we explore the impact of alternative dark matter (altDM) models on galaxies during the Epoch of Reionization. The simulations adopt the IllustrisTNG galaxy formation model. We focus on altDM models that exhibit small-scale suppression of the matter power spectrum, namely warm dark matter (WDM), fuzzy dark matter (FDM), and interacting dark matter (IDM) with strong dark acoustic oscillations (sDAO). In altDM scenarios, both the halo mass functions and the ultraviolet luminosity functions at z ≳ 6 are suppressed at the low-mass/faint end, leading to delayed global star formation and reionization histories. However, strong non-linear effects enable altDM models to ‘catch up’ with cold dark matter (CDM) in terms of star formation and reionization. The specific star formation rates are enhanced in halos below the half-power mass in altDM models. This enhancement coincides with increased gas abundance, reduced gas depletion times, more compact galaxy sizes, and steeper metallicity gradients at the outskirts of the galaxies. These changes in galaxy properties can help disentangle altDM signatures from a range of astrophysical uncertainties. Meanwhile, it is the first time that altDM models have been studied in RHD simulations of galaxy formation. We uncover significant systematic uncertainties in reionization assumptions on the faint-end luminosity function. This underscores the necessity of accurately modeling the small-scale morphology of reionization in making predictions for the low-mass galaxy population. Upcoming James Webb Space Telescope imaging surveys of deep lensed fields hold potential for uncovering the faint low-mass galaxy population, which could provide constraints on altDM models.more » « less
-
This is the second in a series of papers in which we use JWST MIRI multiband imaging to measure the warm dust emission in a sample of 31 multiply imaged quasars, to be used as a probe of the particle nature of dark matter. We present measurements of the relative magnifications of the strongly lensed warm dust emission in a sample of 9 systems. The warm dust region is compact and sensitive to perturbations by populations of halos down to masses ∼106 M⊙. Using these warm dust flux-ratio measurements in combination with 5 previous narrow-line flux-ratio measurements, we constrain the halo mass function. In our model, we allow for complex deflector macromodels with flexible third and fourth-order multipole deviations from ellipticity, and we introduce an improved model of the tidal evolution of subhalos. We constrain a WDM model and find an upper limit on the half-mode mass of 107.6M⊙ at posterior odds of 10:1. This corresponds to a lower limit on a thermally produced dark matter particle mass of 6.1 keV. This is the strongest gravitational lensing constraint to date, and comparable to those from independent probes such as the Lyα forest and Milky Way satellite galaxies.more » « less
An official website of the United States government

