skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Climate-warming-driven changes in the cryosphere and their impact on groundwater–surface-water interactions in the Heihe River basin
Abstract. The Heihe River basin in northwest China depends heavilyon both anthropogenic and natural storage (e.g., surface reservoirs, rivers andgroundwater) to support economic and environmental functions. The QilianMountain cryosphere in the upper basin is integral to recharging thesestorage supplies. It is well established that climate warming is drivingmajor shifts in high-elevation water storage through loss of glaciers andpermafrost. However, the impacts on groundwater–surface-water interactionsand water supply in corresponding lower reaches are less clear. We built anintegrated hydrologic model of the middle basin, where most water usageoccurs, in order to explore the hydrologic response to the changingcryosphere. We simulate the watershed response to loss of glaciers (glacier scenario),advanced permafrost degradation (permafrost scenario), both of these changes simultaneously (combined scenario) andprojected temperature increases in the middle basin (warming scenario) by alteringstreamflow inputs to the model to represent cryosphere-melting processes, aswell as by increasing the temperature of the climate forcing data. Netlosses to groundwater storage in the glacier scenario and net gains in the permafrost and combined scenarios showthe potential of groundwater exchanges to mediate streamflow shifts. Theresult of the combined scenario also shows that permafrost degradation has more of animpact on the system than glacial loss. Seasonal differences ingroundwater–surface-water partitioning are also evident. The glacier scenario hasthe highest fraction of groundwater in terms of streamflow in early spring. Thepermafrost and combined scenarios meanwhile have the highest fraction of streamflowinfiltration in late spring and summer. The warming scenario raises the temperatureof the combined scenario by 2 ∘C. This results in net groundwater storageloss, a reversal from the combined scenario. Large seasonal changes inevapotranspiration and stream network connectivity relative to the combined scenario show thepotential for warming to overpower changes resulting from streamflow. Ourresults demonstrate the importance of understanding the entire system ofgroundwater–surface-water exchanges to assess water resources underchanging climatic conditions. Ultimately, this analysis can be used toexamine the cascading impact of climate change in the cryosphere on theresilience of water resources in arid basins downstream of mountain rangesglobally.  more » « less
Award ID(s):
1855912
PAR ID:
10437020
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Hydrology and Earth System Sciences
Volume:
27
Issue:
14
ISSN:
1607-7938
Page Range / eLocation ID:
2763 to 2785
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Streamflow generation in mountain watersheds is strongly influenced by snow accumulation and melt as well as groundwater connectivity. In mountainous regions with limestone and dolomite geology, bedrock formations can host karst aquifers, which play a significant role in snowmelt–discharge dynamics. However, mapping complex karst features and the resulting surface‐groundwater exchanges at large scales remains infeasible. In this study, timeseries analysis of continuous discharge and specific conductance measurements were combined with gridded snowmelt predictions to characterize seasonal streamflow response and evaluate dominant watershed controls across 12 monitoring sites in a karstified 554 km2watershed in northern Utah, USA. Immense surface water hydrologic variability across subcatchments, years and seasons was linked to geologic controls on groundwater dynamics. Unlike many mountain watersheds, the variability between subcatchments could not be well described by typical watershed properties, including elevation or surficial geology. To fill this gap, a conceptual framework was proposed to characterize subsurface controls on snowmelt–discharge dynamics in karst mountain watersheds in terms of conduit flow direction, aquifer storage capacity and connectivity. This framework requires only readily measured surface water and climatic data from nested monitoring sites and was applied to the study watershed to demonstrate its applicability for evaluating dominant controls and climate sensitivity. 
    more » « less
  2. Rock glaciers are common landforms in mountainous areas of the western US. The motion of active rock glaciers is a key indicator of ice content, offering connections to climate and hydrologic systems. Here, we quantified the movement of six rock glaciers in the La Sal and Uinta Mountains of Utah through repeat differential GPS surveying. Networks of 10–41 points on each rock glacier were surveyed in September 2021; July 2022; September 2022; and July 2023. We found that all features are moving with average annual rates of motion from 1.5 ± 0.8 to 18.5 ± 7.5 cm/yr. Rock glaciers move up to 3× faster in the summer than in the winter, and rates of motion were greater in 2023 after a winter with above-average snowfall, emphasizing the role of liquid water availability. Velocities of individual points in the winter of 2021–22 are positively correlated with velocities during the winter of 2022–23, suggesting that spatial variability of motion is not stochastic, but rather reflects internal properties of each rock glacier. Bottom temperature of snow measurements during winter, and the temperature of springs discharging water in summer, suggest that these rock glaciers contain modern permafrost. Radiocarbon data document advance of one rock glacier during the Little Ice Age. Our GPS dataset reveals complicated patterns of rock glacier movement, and the network of survey points we established will be a valuable baseline for detecting future cryosphere change in these mountains. 
    more » « less
  3. Abstract. Climate models predict amplified warming at high elevations in low latitudes,making tropical glacierized regions some of the most vulnerable hydrologicalsystems in the world. Observations reveal decreasing streamflow due toretreating glaciers in the Andes, which hold 99% of all tropicalglaciers. However, the timescales over which meltwater contributes tostreamflow and the pathways it takes – surface and subsurface – remainuncertain, hindering our ability to predict how shrinking glaciers willimpact water resources. Two major contributors to this uncertainty are thesparsity of hydrologic measurements in tropical glacierized watersheds andthe complication of hydrograph separation where there is year-round glaciermelt. We address these challenges using a multi-method approach that employsrepeat hydrochemical mixing model analysis, hydroclimatic time seriesanalysis, and integrated watershed modeling. Each of these approachesinterrogates distinct timescale relationships among meltwater, groundwater,and stream discharge. Our results challenge the commonly held conceptualmodel that glaciers buffer discharge variability. Instead, in a subhumidwatershed on Volcán Chimborazo, Ecuador, glacier melt drives nearly allthe variability in discharge (Pearson correlation coefficient of 0.89 insimulations), with glaciers contributing a broad range of 20%–60%or wider of discharge, mostly (86%) through surface runoff on hourlytimescales, but also through infiltration that increases annual groundwatercontributions by nearly 20%. We further found that rainfall may enhanceglacier melt contributions to discharge at timescales that complement glaciermelt production, possibly explaining why minimum discharge occurred at thestudy site during warm but dry El Niño conditions, which typicallyheighten melt in the Andes. Our findings caution against extrapolations fromisolated measurements: stream discharge and glacier melt contributions intropical glacierized systems can change substantially at hourly tointerannual timescales, due to climatic variability and surface to subsurfaceflow processes. 
    more » « less
  4. Abstract Glaciers in the Arctic have lost considerable mass during the last two decades. About a third of the glaciers by area drains into the ocean, yet the mechanisms and drivers governing mass loss at glacier calving fronts are poorly constrained in part due to few long-term glacier-ocean observations. Here, we combine a detailed satellite-based record of calving front ablation for Austfonna, the largest ice cap on Svalbard, with in-situ ocean records from an offshore mooring and modelled freshwater runoff for the period 2018-2022. We show that submarine melting and calving occur almost exclusively in autumn for all types of outlet glaciers, even for the surging and fast-flowing glacier Storisstraumen. Ocean temperature controls the observed frontal ablation, whereas subglacial runoff of surface meltwater appears to have little direct impact on the total ablation. The seasonal warming of the offshore waters varies both in magnitude, depth and timing, suggesting a complex interplay between inflowing Atlantic-influenced water at depth and seasonally warmed surface water in the Barents Sea. The immediate response of frontal ablation to seasonal ocean warming suggests that marine-terminating glaciers in high Arctic regions exposed to Atlantification are prone to rapid changes that should be accounted for in future glacier projections. 
    more » « less
  5. Climate change affects cryosphere-fed rivers and alters seasonal sediment dynamics, affecting cyclical fluvial material supply and year-round water-food-energy provisions to downstream communities. Here, we demonstrate seasonal sediment-transport regime shifts from the 1960s to 2000s in four cryosphere-fed rivers characterized by glacial, nival, pluvial, and mixed regimes, respectively. Spring sees a shift toward pluvial-dominated sediment transport due to less snowmelt and more erosive rainfall. Summer is characterized by intensified glacier meltwater pulses and pluvial events that exceptionally increase sediment fluxes. Our study highlights that the increases in hydroclimatic extremes and cryosphere degradation lead to amplified variability in fluvial fluxes and higher summer sediment peaks, which can threaten downstream river infrastructure safety and ecosystems and worsen glacial/pluvial floods. We further offer a monthly-scale sediment-availability-transport model that can reproduce such regime shifts and thus help facilitate sustainable reservoir operation and river management in wider cryospheric regions under future climate and hydrological change. 
    more » « less