skip to main content


Title: The 2022 applied physics by pioneering women: a roadmap
Abstract Women have made significant contributions to applied physics research and development, and their participation is vital to continued progress. Recognizing these contributions is important for encouraging increased involvement and creating an equitable environment in which women can thrive. This Roadmap on Women in Applied Physics, written by women scientists and engineers, is intended to celebrate women’s accomplishments, highlight established and early career researchers enlarging the boundaries in their respective fields, and promote increased visibility for the impact women have on applied physics research. Perspectives cover the topics of plasma materials processing and propulsion, super-resolution microscopy, bioelectronics, spintronics, superconducting quantum interference device technology, quantum materials, 2D materials, catalysis and surface science, fuel cells, batteries, photovoltaics, neuromorphic computing and devices, nanophotonics and nanophononics, and nanomagnetism. Our intent is to inspire more women to enter these fields and encourage an atmosphere of inclusion within the scientific community.  more » « less
Award ID(s):
1805112
NSF-PAR ID:
10437208
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Journal of Physics D: Applied Physics
Volume:
56
Issue:
7
ISSN:
0022-3727
Page Range / eLocation ID:
073001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The value of internship experiences for engineering students is widely discussed in the literature. With this analysis, we seek to contribute knowledge addressing 1) the prevalence of internship experiences amongst engineering students drawn from a large, multi-institutional, nationally-representative sample, 2) if the likelihood of having an engineering internship experiences is equitable amongst various student identities, and 3) what additional factors influence the likelihood of a student having an internship experience, such as field of study and institution type. Data were drawn from a 2015 multi-institutional nationally representative survey of engineering juniors and seniors, excluding one institution with a mandatory co-op program (n = 5530 from 26 institutions). A z-test was used to analyze differences in internship participation rates related to academic cohort (e.g., junior, senior), gender, underrepresented minority (URM) status, first-generation, and low-income status, as well as a subset of identities at the intersection of these groups (gender + URM; first-generation + low-income). A logistic regression model further examined factors such as GPA, engineering task self-efficacy, field of engineering, and institution type. We found that amongst the students in our dataset, 64.7% of the seniors had “worked in a professional engineering environment as an intern/co-op” (41.1% of juniors, 64.7% of 5th years). Significantly less likely (p<0.05) to have internship experiences were men compared to women (52.9% vs 58.3%), URM students compared to their majority counterparts (41.5% vs 56.8%), first-generation students compared to continuing (47.6% vs 57.2%), and low-income students compared to higher-income peers (46.2% vs 57.4%). Examined intersectional identities significantly less likely to have an internship were URM men (37.5%) and first-generation low-income students (42.0%), while non-URM women (60.5%) and continuing high-income students (58.2%) were most likely to report having an internship. Results from the logistic regression model indicate that significant factors are cohort (junior vs senior), GPA, engineering task self-efficacy, and engineering field. When controlling for the other variables in the model, gender, URM, first-generation, and low-income status remain significant; however, the interaction effect between these identities is not significant in the full model. Institution type did not have much impact. Having a research experience was not a significant factor in predicting the likelihood of having an internship experience, although studying abroad significantly increased the odds. Amongst engineering fields, industrial and civil engineering students were the most likely to have an internship, while aerospace and materials engineering students were the least likely. Full results and discussion will be presented in the paper. This analysis provides valuable information for a variety of stakeholders. For engineering programs, it is useful to benchmark historic students’ rates of internship participation against a multi-institutional, nationally representative dataset. For academic advisors and career services professionals, it is useful to understand in which fields an internship is common to be competitive on the job market, and which fields have fewer opportunities or prioritize research experiences. Ultimately, for those in higher education and workforce development it is vital to understand which identities, and intersectional identities, are accessing internship experiences as a pathway into the engineering workforce. 
    more » « less
  2. Abstract

    The growth of epitaxial semiconductors and oxides has long since revolutionized the electronics and optics fields, and continues to be exploited to uncover new physics stemming from quantum interactions. While the recent emergence of halide perovskites offers exciting new opportunities for a range of thin‐film electronics, the principles of epitaxy have yet to be applied to this new class of materials and the full potential of these materials is still not yet known. In this work, single‐domain inorganic halide perovskite epitaxy is demonstrated. This is enabled by reactive vapor phase deposition onto single crystal metal halide substrates with congruent ionic interactions. For the archetypical halide perovskite, cesium tin bromide, two epitaxial phases, a cubic phase and tetragonal phase, are uncovered which emerge via stoichiometry control that are both stabilized with vastly differing lattice constants and accommodated via epitaxial rotation. This epitaxial growth is exploited to demonstrate multilayer 2D quantum wells of a halide‐perovskite system. This work ultimately unlocks new routes to push halide perovskites to their full potential.

     
    more » « less
  3. - (Ed.)
    Abstract Designing materials with advanced functionalities is the main focus of contemporary solid-state physics and chemistry. Research efforts worldwide are funneled into a few high-end goals, one of the oldest, and most fascinating of which is the search for an ambient temperature superconductor (A-SC). The reason is clear: superconductivity at ambient conditions implies being able to handle, measure and access a single, coherent, macroscopic quantum mechanical state without the limitations associated with cryogenics and pressurization. This would not only open exciting avenues for fundamental research, but also pave the road for a wide range of technological applications, affecting strategic areas such as energy conservation and climate change. In this roadmap we have collected contributions from many of the main actors working on superconductivity, and asked them to share their personal viewpoint on the field. The hope is that this article will serve not only as an instantaneous picture of the status of research, but also as a true roadmap defining the main long-term theoretical and experimental challenges that lie ahead. Interestingly, although the current research in superconductor design is dominated by conventional (phonon-mediated) superconductors, there seems to be a widespread consensus that achieving A-SC may require different pairing mechanisms. In memoriam, to Neil Ashcroft, who inspired us all. 
    more » « less
  4. Studies have shown that mentorship is critical to the career and professional development of workers, including postsecondary faculty. Evidence from the literature on faculty-to faculty mentorship have generally focused on the medical field or on the higher education institution where the study was conducted. This study extends the literature by examining data from faculty across multiple institutions and across fields using the Early Career Doctorates Survey (ECDS). Guided by a theoretical framework adapted from Higgins and Kram (2001), multiple linear regression models are applied to investigate which factors are associated with mentorship attainment, and how mentorship of faculty is associated with faculty productivity and job satisfaction. In contrast to previous literature, results indicate that women and racially minoritized faculty have similar likelihood of reporting having a formal/informal mentor compared to men and White colleagues, respectively. Furthermore, receiving mentorship does not appear to be associated with increased productivity or job satisfaction, but is associated with a 10% higher salary for faculty who reported having a mentor. These results, however, are limited to observable outcomes, and the benefits to mentoring may extend beyond that to include well-being, sense of belonging, and other variables not measured in the dataset. Overall, research findings contribute to existing efforts and ongoing conversations on faculty mentorship by offering additional evidence from a nationally representative sample, providing a benchmark for individual institutions to evaluate their professional development programs for faculty. 
    more » « less
  5. Excited by the great success of metal halide perovskites in the optoelectronic and electro-optic fields and the interesting emerging physics (Rashba splitting, quantum anomalous hall effect) of layered metal halides, metal halides have recently been attracting significant attentions from both research and industrial communities. It is shown that most progresses have been made when these materials are obtained at reduced dimensions. Among several growth methods, vapor phase epitaxy has been demonstrated with a universal control on morphology, phase, and composition. We thus believe that a thorough understanding on the physical properties and on the growth of general metal halide compounds at reduced dimensions would be very beneficial in the study of recent perovskites and layered metal halide materials. This review covers the physical properties of most studied metal halides and summarizes the vapor phase epitaxial growth knowledge collected in the past century. We hope that this comprehensive review could be helpful in designing new physical properties and in planning growth parameters for emerging metal halide crystals. 
    more » « less