skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data-Driven Quantitation of Movement Abnormality after Stroke
Stroke commonly affects the ability of the upper extremities (UEs) to move normally. In clinical settings, identifying and measuring movement abnormality is challenging due to the imprecision and impracticality of available assessments. These challenges interfere with therapeutic tracking, communication, and treatment. We thus sought to develop an approach that blends precision and pragmatism, combining high-dimensional motion capture with out-of-distribution (OOD) detection. We used an array of wearable inertial measurement units to capture upper body motion in healthy and chronic stroke subjects performing a semi-structured, unconstrained 3D tabletop task. After data were labeled by human coders, we trained two deep learning models exclusively on healthy subject data to classify elemental movements (functional primitives). We tested these healthy subject-trained models on previously unseen healthy and stroke motion data. We found that model confidence, indexed by prediction probabilities, was generally high for healthy test data but significantly dropped when encountering OOD stroke data. Prediction probabilities worsened with more severe motor impairment categories and were directly correlated with individual impairment scores. Data inputs from the paretic UE, rather than trunk, most strongly influenced model confidence. We demonstrate for the first time that using OOD detection with high-dimensional motion data can reveal clinically meaningful movement abnormality in subjects with chronic stroke.  more » « less
Award ID(s):
1922658
PAR ID:
10437214
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Bioengineering
Volume:
10
Issue:
6
ISSN:
2306-5354
Page Range / eLocation ID:
648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Automatic assessment of impairment and disease severity is a key challenge in data-driven medicine. We propose a framework to address this challenge, which leverages AI models trained exclusively on healthy individuals. The COnfidence-Based chaRacterization of Anomalies (COBRA) score exploits the decrease in confidence of these models when presented with impaired or diseased patients to quantify their deviation from the healthy population. We applied the COBRA score to address a key limitation of current clinical evaluation of upper-body impairment in stroke patients. The gold-standard Fugl-Meyer Assessment (FMA) requires in-person administration by a trained assessor for 30-45 minutes, which restricts monitoring frequency and precludes physicians from adapting rehabilitation protocols to the progress of each patient. The COBRA score, computed automatically in under one minute, is shown to be strongly correlated with the FMA on an independent test cohort for two different data modalities: wearable sensors (ρ = 0.814, 95% CI [0.700,0.888]) and video (ρ = 0.736, 95% C.I [0.584, 0.838]). To demonstrate the generalizability of the approach to other conditions, the COBRA score was also applied to quantify severity of knee osteoarthritis from magnetic-resonance imaging scans, again achieving significant correlation with an independent clinical assessment (ρ = 0.644, 95% C.I [0.585,0.696]). 
    more » « less
  2. Chua Chin Heng, Matthew (Ed.)
    Stroke rehabilitation seeks to accelerate motor recovery by training functional activities, but may have minimal impact because of insufficient training doses. In animals, training hundreds of functional motions in the first weeks after stroke can substantially boost upper extremity recovery. The optimal quantity of functional motions to boost recovery in humans is currently unknown, however, because no practical tools exist to measure them during rehabilitation training. Here, we present PrimSeq, a pipeline to classify and count functional motions trained in stroke rehabilitation. Our approach integrates wearable sensors to capture upper-body motion, a deep learning model to predict motion sequences, and an algorithm to tally motions. The trained model accurately decomposes rehabilitation activities into elemental functional motions, outperforming competitive machine learning methods. PrimSeq furthermore quantifies these motions at a fraction of the time and labor costs of human experts. We demonstrate the capabilities of PrimSeq in previously unseen stroke patients with a range of upper extremity motor impairment. We expect that our methodological advances will support the rigorous measurement required for quantitative dosing trials in stroke rehabilitation. 
    more » « less
  3. Affecting muscle spasticity, strength, and coordination, stroke results in alterations to muscle control and ability to compensate from unexpected perturbations. Post-stroke, upper extremity movements are heavily modified from perturbations, which increase the difficulty of activities of daily living (ADLs). Postural responses from upper extremity perturbations in healthy and stroke populations have been examined in movements constrained to 2D planar motion, and may provide insight as an assessment tool to help inform therapists to better structure rehabilitation training regimens towards individualized health care for improved long-term outcomes. However, implications on constraining motion in the horizontal plane are not clear and may reduce the generalizability of the findings to the movement through unconstrained 3D space necessary for ADLs. In this paper, we explore the effects of joint perturbations on the elbow and shoulder in unconstrained, gravity-compensated position holding tasks. We present a metric-diverse, dynamic task framework building upon previous 2D experiments designed to better assess rehabilitative efforts in movement trajectories with applied gravity compensation in three dimensional space aimed towards the generalizability of 3D motion. Results suggest that motion of multi-DoF joints display varied movement qualities in 3D space with robotic gravity compensation when compared to constrained planar movements. 
    more » « less
  4. Sleep is known to promote recovery post-stroke. However, there is a paucity of data profiling sleep oscillations in the post-stroke human brain. Recent rodent work showed that resurgence of physiologic spindles coupled to sleep slow oscillations (SOs) and concomitant decrease in pathological delta (δ) waves is associated with sustained motor performance gains during stroke recovery. The goal of this study was to evaluate bilaterality of non-rapid eye movement (NREM) sleep-oscillations (namely SOs,δ-waves, spindles, and their nesting) in post-stroke patients vs. healthy control subjects. We analyzed NREM-marked electroencephalography (EEG) data in hospitalized stroke-patients (n = 5) and healthy subjects (n = 3). We used a laterality index to evaluate symmetry of NREM oscillations across hemispheres. We found that stroke subjects had pronounced asymmetry in the oscillations, with a predominance of SOs,δ-waves, spindles, and nested spindles in affected hemisphere, when compared to the healthy subjects. Recent preclinical work classified SO-nested spindles as restorative post-stroke andδ-wave-nested spindles as pathological. We found that the ratio of SO-nested spindles laterality index toδ-wave-nested spindles laterality index was lower in stroke subjects. Using linear mixed models (which included random effects of concurrent pharmacologic drugs), we found large and medium effect size forδ-wave nested spindle and SO-nested spindle, respectively. Our results in this pilot study indicate that considering laterality index of NREM oscillations might be a useful metric for assessing recovery post-stroke and that factoring in pharmacologic drugs may be important when targeting sleep modulation for neurorehabilitation post-stroke. 
    more » « less
  5. BackgroundStroke therapy is essential to reduce impairments and improve motor movements by engaging autogenous neuroplasticity. Traditionally, stroke rehabilitation occurs in inpatient and outpatient rehabilitation facilities. However, recent literature increasingly explores moving the recovery process into the home and integrating technology-based interventions. This study advances this goal by promoting in-home, autonomous recovery for patients who experienced a stroke through robotics-assisted rehabilitation and classifying stroke residual severity using machine learning methods. ObjectiveOur main objective is to use kinematics data collected during in-home, self-guided therapy sessions to develop supervised machine learning methods, to address a clinician’s autonomous classification of stroke residual severity–labeled data toward improving in-home, robotics-assisted stroke rehabilitation. MethodsIn total, 33 patients who experienced a stroke participated in in-home therapy sessions using Motus Nova robotics rehabilitation technology to capture upper and lower body motion. During each therapy session, the Motus Hand and Motus Foot devices collected movement data, assistance data, and activity-specific data. We then synthesized, processed, and summarized these data. Next, the therapy session data were paired with clinician-informed, discrete stroke residual severity labels: “no range of motion (ROM),” “low ROM,” and “high ROM.” Afterward, an 80%:20% split was performed to divide the dataset into a training set and a holdout test set. We used 4 machine learning algorithms to classify stroke residual severity: light gradient boosting (LGB), extra trees classifier, deep feed-forward neural network, and classical logistic regression. We selected models based on 10-fold cross-validation and measured their performance on a holdout test dataset using F1-score to identify which model maximizes stroke residual severity classification accuracy. ResultsWe demonstrated that the LGB method provides the most reliable autonomous detection of stroke severity. The trained model is a consensus model that consists of 139 decision trees with up to 115 leaves each. This LGB model boasts a 96.70% F1-score compared to logistic regression (55.82%), extra trees classifier (94.81%), and deep feed-forward neural network (70.11%). ConclusionsWe showed how objectively measured rehabilitation training paired with machine learning methods can be used to identify the residual stroke severity class, with efforts to enhance in-home self-guided, individualized stroke rehabilitation. The model we trained relies only on session summary statistics, meaning it can potentially be integrated into similar settings for real-time classification, such as outpatient rehabilitation facilities. 
    more » « less