skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Time Series Prediction and Classification using Silicon Photonic Neuron with a Self-Connection
We experimentally demonstrated real-time operation of a photonic neuron with a self-connection, a pre-requisite for integrated recurrent neural networks (RNNs). After studying two applications we propose a photonics-assisted platform for time series prediction and classification.  more » « less
Award ID(s):
2128616
PAR ID:
10437237
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Conference on Lasers and Electrooptics
ISSN:
2160-9020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We consider a natural generalization of classical scheduling problems to a setting in which using a time unit for processing a job causes some time-dependent cost, the time-of-use tariff, which must be paid in addition to the standard scheduling cost. We focus on preemptive single-machine scheduling and two classical scheduling cost functions, the sum of (weighted) completion times and the maximum completion time, that is, the makespan. While these problems are easy to solve in the classical scheduling setting, they are considerably more complex when time-of-use tariffs must be considered. We contribute optimal polynomial-time algorithms and best possible approximation algorithms. For the problem of minimizing the total (weighted) completion time on a single machine, we present a polynomial-time algorithm that computes for any given sequence of jobs an optimal schedule, i.e., the optimal set of time slots to be used for preemptively scheduling jobs according to the given sequence. This result is based on dynamic programming using a subtle analysis of the structure of optimal solutions and a potential function argument. With this algorithm, we solve the unweighted problem optimally in polynomial time. For the more general problem, in which jobs may have individual weights, we develop a polynomial-time approximation scheme (PTAS) based on a dual scheduling approach introduced for scheduling on a machine of varying speed. As the weighted problem is strongly NP-hard, our PTAS is the best possible approximation we can hope for. For preemptive scheduling to minimize the makespan, we show that there is a comparably simple optimal algorithm with polynomial running time. This is true even in a certain generalized model with unrelated machines. 
    more » « less
  2. Starting from Kirchhoff-Huygens representation and Duhamel's principle of time-domain wave equations, we propose novel butterfly-compressed Hadamard integrators for self-adjoint wave equations in both time and frequency domain in an inhomogeneous medium. First, we incorporate the leading term of Hadamard's ansatz into the Kirchhoff-Huygens representation to develop a short-time valid propagator. Second, using Fourier transform in time, we derive the corresponding Eulerian short-time propagator in the frequency domain; on top of this propagator, we further develop a time-frequency-time (TFT) method for the Cauchy problem of time-domain wave equations. Third, we further propose a time-frequency-time-frequency (TFTF) method for the corresponding point-source Helmholtz equation, which provides Green's functions of the Helmholtz equation for all angular frequencies within a given frequency band. Fourth, to implement the TFT and TFTF methods efficiently, we introduce butterfly algorithms to compress oscillatory integral kernels at different frequencies. As a result, the proposed methods can construct wave field beyond caustics implicitly and advance spatially overturning waves in time naturally with quasi-optimal computational complexity and memory usage. Furthermore, once constructed the Hadamard integrators can be employed to solve both time-domain wave equations with various initial conditions and frequency-domain wave equations with different point sources. Numerical examples for two-dimensional wave equations illustrate the accuracy and efficiency of the proposed methods. 
    more » « less
  3. Servedio, Rocco (Ed.)
    We study the complexity of lattice problems in a world where algorithms, reductions, and protocols can run in superpolynomial time, revisiting four foundational results: two worst-case to average-case reductions and two protocols. We also show a novel protocol. 1. We prove that secret-key cryptography exists if O˜(n‾√)-approximate SVP is hard for 2εn-time algorithms. I.e., we extend to our setting (Micciancio and Regev's improved version of) Ajtai's celebrated polynomial-time worst-case to average-case reduction from O˜(n)-approximate SVP to SIS. 2. We prove that public-key cryptography exists if O˜(n)-approximate SVP is hard for 2εn-time algorithms. This extends to our setting Regev's celebrated polynomial-time worst-case to average-case reduction from O˜(n1.5)-approximate SVP to LWE. In fact, Regev's reduction is quantum, but ours is classical, generalizing Peikert's polynomial-time classical reduction from O˜(n2)-approximate SVP. 3. We show a 2εn-time coAM protocol for O(1)-approximate CVP, generalizing the celebrated polynomial-time protocol for O(n/logn‾‾‾‾‾‾‾√)-CVP due to Goldreich and Goldwasser. These results show complexity-theoretic barriers to extending the recent line of fine-grained hardness results for CVP and SVP to larger approximation factors. (This result also extends to arbitrary norms.) 4. We show a 2εn-time co-non-deterministic protocol for O(logn‾‾‾‾‾√)-approximate SVP, generalizing the (also celebrated!) polynomial-time protocol for O(n‾√)-CVP due to Aharonov and Regev. 5. We give a novel coMA protocol for O(1)-approximate CVP with a 2εn-time verifier. All of the results described above are special cases of more general theorems that achieve time-approximation factor tradeoffs. 
    more » « less
  4. Real-world applications often involve irregular time series, for which the time intervals between successive observations are non-uniform. Irregularity across multiple features in a multi-variate time series further results in a different subset of features at any given time (i.e., asynchronicity). Existing pre-training schemes for time-series, however, often assume regularity of time series and make no special treatment of irregularity. We argue that such irregularity offers insight about domain property of the data—for example, frequency of hospital visits may signal patient health condition—that can guide representation learning. In this work, we propose PrimeNet to learn a self-supervised representation for irregular multivariate time-series. Specifically, we design a timesensitive contrastive learning and data reconstruction task to pre-train a model. Irregular time-series exhibits considerable variations in sampling density over time. Hence, our triplet generation strategy follows the density of the original data points, preserving its native irregularity. Moreover, the sampling density variation over time makes data reconstruction difficult for different regions. Therefore, we design a data masking technique that always masks a constant time duration to accommodate reconstruction for regions of different sampling density. We learn with these tasks using unlabeled data to build a pre-trained model and fine-tune on a downstream task with limited labeled data, in contrast with existing fully supervised approach for irregular time-series, requiring large amounts of labeled data. Experiment results show that PrimeNet significantly outperforms state-of-the-art methods on naturally irregular and asynchronous data from Healthcare and IoT applications for several downstream tasks, including classification, interpolation, and regression. 
    more » « less
  5. Abstract Background Traditional mediation analysis typically examines the relations among an intervention, a time-invariant mediator, and a time-invariant outcome variable. Although there may be a total effect of the intervention on the outcome, there is a need to understand the process by which the intervention affects the outcome (i.e., the indirect effect through the mediator). This indirect effect is frequently assumed to be time-invariant. With improvements in data collection technology, it is possible to obtain repeated assessments over time resulting in intensive longitudinal data. This calls for an extension of traditional mediation analysis to incorporate time-varying variables as well as time-varying effects. Methods We focus on estimation and inference for the time-varying mediation model, which allows mediation effects to vary as a function of time. We propose a two-step approach to estimate the time-varying mediation effect. Moreover, we use a simulation-based approach to derive the corresponding point-wise confidence band for the time-varying mediation effect. Results Simulation studies show that the proposed procedures perform well when comparing the confidence band and the true underlying model. We further apply the proposed model and the statistical inference procedure to data collected from a smoking cessation study. Conclusions We present a model for estimating time-varying mediation effects that allows both time-varying outcomes and mediators. Simulation-based inference is also proposed and implemented in a user-friendly R package. 
    more » « less