We examine correlations of the Möbius function over $$\mathbb{F}_{q}[t]$$ with linear or quadratic phases, that is, averages of the form 1 $$\begin{eqnarray}\frac{1}{q^{n}}\mathop{\sum }_{\deg f0$$ if $$Q$$ is linear and $$O(q^{-n^{c}})$$ for some absolute constant $c>0$ if $$Q$$ is quadratic. The latter bound may be reduced to $$O(q^{-c^{\prime }n})$$ for some $$c^{\prime }>0$$ when $Q(f)$ is a linear form in the coefficients of $$f^{2}$$ , that is, a Hankel quadratic form, whereas, for general quadratic forms, it relies on a bilinear version of the additive-combinatorial Bogolyubov theorem.
more »
« less
The mapping class group action on -character varieties
Abstract Let $$\unicode[STIX]{x1D6F4}$$ be a compact orientable surface of genus $g=1$ with $n=1$ boundary component. The mapping class group $$\unicode[STIX]{x1D6E4}$$ of $$\unicode[STIX]{x1D6F4}$$ acts on the $$\mathsf{SU}(3)$$ -character variety of $$\unicode[STIX]{x1D6F4}$$ . We show that the action is ergodic with respect to the natural symplectic measure on the character variety.
more »
« less
- Award ID(s):
- 1709791
- PAR ID:
- 10437241
- Date Published:
- Journal Name:
- Ergodic Theory and Dynamical Systems
- Volume:
- 41
- Issue:
- 8
- ISSN:
- 0143-3857
- Page Range / eLocation ID:
- 2382 to 2396
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Let $$\unicode[STIX]{x1D6FC}\in \mathbb{R}\backslash \mathbb{Q}$$ and $$\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FC})=\limsup _{n\rightarrow \infty }(\ln q_{n+1})/q_{n}<\infty$$ , where $$p_{n}/q_{n}$$ is the continued fraction approximation to $$\unicode[STIX]{x1D6FC}$$ . Let $$(H_{\unicode[STIX]{x1D706},\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}}u)(n)=u(n+1)+u(n-1)+2\unicode[STIX]{x1D706}\cos 2\unicode[STIX]{x1D70B}(\unicode[STIX]{x1D703}+n\unicode[STIX]{x1D6FC})u(n)$$ be the almost Mathieu operator on $$\ell ^{2}(\mathbb{Z})$$ , where $$\unicode[STIX]{x1D706},\unicode[STIX]{x1D703}\in \mathbb{R}$$ . Avila and Jitomirskaya [The ten Martini problem. Ann. of Math. (2), 170 (1) (2009), 303–342] conjectured that, for $$2\unicode[STIX]{x1D703}\in \unicode[STIX]{x1D6FC}\mathbb{Z}+\mathbb{Z}$$ , $$H_{\unicode[STIX]{x1D706},\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}}$$ satisfies Anderson localization if $$|\unicode[STIX]{x1D706}|>e^{2\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FC})}$$ . In this paper, we develop a method to treat simultaneous frequency and phase resonances and obtain that, for $$2\unicode[STIX]{x1D703}\in \unicode[STIX]{x1D6FC}\mathbb{Z}+\mathbb{Z}$$ , $$H_{\unicode[STIX]{x1D706},\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}}$$ satisfies Anderson localization if $$|\unicode[STIX]{x1D706}|>e^{3\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FC})}$$ .more » « less
-
Let $$f\in C^{2}(\mathbb{T}^{2})$$ have mean value 0 and consider $$\begin{eqnarray}\sup _{\unicode[STIX]{x1D6FE}\,\text{closed geodesic}}\frac{1}{|\unicode[STIX]{x1D6FE}|}\biggl|\int _{\unicode[STIX]{x1D6FE}}f\,d{\mathcal{H}}^{1}\biggr|,\end{eqnarray}$$ where $$\unicode[STIX]{x1D6FE}$$ ranges over all closed geodesics $$\unicode[STIX]{x1D6FE}:\mathbb{S}^{1}\rightarrow \mathbb{T}^{2}$$ and $$|\unicode[STIX]{x1D6FE}|$$ denotes its length. We prove that this supremum is always attained. Moreover, we can bound the length of the geodesic $$\unicode[STIX]{x1D6FE}$$ attaining the supremum in terms of the smoothness of the function: for all $$s\geq 2$$ , $$\begin{eqnarray}|\unicode[STIX]{x1D6FE}|^{s}{\lesssim}_{s}\biggl(\max _{|\unicode[STIX]{x1D6FC}|=s}\Vert \unicode[STIX]{x2202}_{\unicode[STIX]{x1D6FC}}f\Vert _{L^{1}(\mathbb{T}^{2})}\biggr)\Vert \unicode[STIX]{x1D6FB}f\Vert _{L^{2}}\Vert f\Vert _{L^{2}}^{-2}.\end{eqnarray}$$more » « less
-
In this paper, we study the mixed Littlewood conjecture with pseudo-absolute values. For any pseudo-absolute-value sequence $${\mathcal{D}}$$ , we obtain a sharp criterion such that for almost every $$\unicode[STIX]{x1D6FC}$$ the inequality $$\begin{eqnarray}|n|_{{\mathcal{D}}}|n\unicode[STIX]{x1D6FC}-p|\leq \unicode[STIX]{x1D713}(n)\end{eqnarray}$$ has infinitely many coprime solutions $$(n,p)\in \mathbb{N}\times \mathbb{Z}$$ for a certain one-parameter family of $$\unicode[STIX]{x1D713}$$ . Also, under a minor condition on pseudo-absolute-value sequences $${\mathcal{D}}_{1},{\mathcal{D}}_{2},\ldots ,{\mathcal{D}}_{k}$$ , we obtain a sharp criterion on a general sequence $$\unicode[STIX]{x1D713}(n)$$ such that for almost every $$\unicode[STIX]{x1D6FC}$$ the inequality $$\begin{eqnarray}|n|_{{\mathcal{D}}_{1}}|n|_{{\mathcal{D}}_{2}}\cdots |n|_{{\mathcal{D}}_{k}}|n\unicode[STIX]{x1D6FC}-p|\leq \unicode[STIX]{x1D713}(n)\end{eqnarray}$$ has infinitely many coprime solutions $$(n,p)\in \mathbb{N}\times \mathbb{Z}$$ .more » « less
-
For each $$t\in \mathbb{R}$$ , we define the entire function $$\begin{eqnarray}H_{t}(z):=\int _{0}^{\infty }e^{tu^{2}}\unicode[STIX]{x1D6F7}(u)\cos (zu)\,du,\end{eqnarray}$$ where $$\unicode[STIX]{x1D6F7}$$ is the super-exponentially decaying function $$\begin{eqnarray}\unicode[STIX]{x1D6F7}(u):=\mathop{\sum }_{n=1}^{\infty }(2\unicode[STIX]{x1D70B}^{2}n^{4}e^{9u}-3\unicode[STIX]{x1D70B}n^{2}e^{5u})\exp (-\unicode[STIX]{x1D70B}n^{2}e^{4u}).\end{eqnarray}$$ Newman showed that there exists a finite constant $$\unicode[STIX]{x1D6EC}$$ (the de Bruijn–Newman constant ) such that the zeros of $$H_{t}$$ are all real precisely when $$t\geqslant \unicode[STIX]{x1D6EC}$$ . The Riemann hypothesis is equivalent to the assertion $$\unicode[STIX]{x1D6EC}\leqslant 0$$ , and Newman conjectured the complementary bound $$\unicode[STIX]{x1D6EC}\geqslant 0$$ . In this paper, we establish Newman’s conjecture. The argument proceeds by assuming for contradiction that $$\unicode[STIX]{x1D6EC}<0$$ and then analyzing the dynamics of zeros of $$H_{t}$$ (building on the work of Csordas, Smith and Varga) to obtain increasingly strong control on the zeros of $$H_{t}$$ in the range $$\unicode[STIX]{x1D6EC}more » « less
An official website of the United States government

