skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Indexing Biotic Interactions in GBIF data
The Global Biodiversity Information Facility (GBIF 2022a) has indexed more than 2 billion occurrence records from 70,147 datasets. These datasets often include "hidden" biotic interaction data because biodiversity communities use the Darwin Core standard (DwC, Wieczorek et al. 2012) in different ways to document biotic interactions. In this study, we extracted biotic interactions from GBIF data using an approach similar to that employed in the Global Biotic Interactions (GloBI; Poelen et al. 2014) and summarized the results. Here we aim to present an estimation of the interaction data available in GBIF, showing that biotic interaction claims can be automatically found and extracted from GBIF. Our results suggest that much can be gained by an increased focus on development of tools that help to index and curate biotic interaction data in existing datasets. Combined with data standardization and best practices for sharing biotic interactions, such as the initiative on plant-pollinators interaction (Salim 2022), this approach can rapidly contribute to and meet open data principles (Wilkinson 2016). We used Preston (Elliott et al. 2020), open-source software that versions biodiversity datasets, to copy all GBIF-indexed datasets. The biodiversity data graph version (Poelen 2020) of the GBIF-indexed datasets used during this study contains 58,504 datasets in Darwin Core Archive (DwC-A) format, totaling 574,715,196 records. After retrieval and verification, the datasets were processed using Elton. Elton extracts biotic interaction data and supports 20+ existing file formats, including various types of data elements in DwC records. Elton also helps align interaction claims (e.g., host of, parasite of, associated with) to the Relations Ontology (RO, Mungall 2022), making it easier to discover datasets across a heterogeneous collection of datasets. Using specific mapping between interaction claims found in the DwC records to the terms in RO*1, Elton found 30,167,984 potential records (with non-empty values for the scanned DwC terms) and 15,248,478 records with recognized interaction types. Taxonomic name validation was performed using Nomer, which maps input names to names found in a variety of taxonomic catalogs. We only considered an interaction record valid where the interaction type could be mapped to a term in RO and where Nomer found a valid name for source and target taxa. Based on the workflow described in Fig. 1, we found 7,947,822 interaction records (52% of the potential interactions). Most of them were generic interactions ( interacts_ with , 87.5%), but the remaining 12.5% (993,477 records) included host-parasite and plant-animal interactions. The majority of the interactions records found involved plants (78%), animals (14%) and fungi (6%). In conclusion, there are many biotic interactions embedded in existing datasets registered in large biodiversity data indexers and aggregators like iDigBio, GBIF, and BioCASE. We exposed these biotic interaction claims using the combined functionality of biodiversity data tools Elton (for interaction data extraction), Preston (for reliable dataset tracking) and Nomer (for taxonomic name alignment). Nonetheless, the development of new vocabularies, standards and best practice guides would facilitate aggregation of interaction data, including the diversification of the GBIF data model (GBIF 2022b) for sharing biodiversity data beyond occurrences data. That is the aim of the TDWG Interest Group on Biological Interactions Data (TDWG 2022).  more » « less
Award ID(s):
2102006
PAR ID:
10437333
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Biodiversity Information Science and Standards
Volume:
6
ISSN:
2535-0897
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Introduction This archive includes a tab-delimited (tsv) and comma-delimited (csv) version of the Discover Life bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila). Discover Life is an important resource for bee species names and this update is from Draft-55, November 2020. Data were accessed and transformed into a tsv file in August 2023 using Global Biotic Interactions (GloBI) nomer software. GloBI now incorporates the Discover Life bee species guide and world checklist in its functionality for searching for bee interactions. Update! New Dataset also includes Subgenera Names A new, tab-delimited version of the Discover Life taxonomy as derived from Dorey et. al, 2023 can be found via Zenodo at https://doi.org/10.5281/zenodo.10463762. This version of the Discover Life world species guide and checklist includes subgeneric names. Citation Please cite the original source for this data as: Ascher, J. S. and J. Pickering. 2022.Discover Life bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila).http://www.discoverlife.org/mp/20q?guide=Apoidea_species Draft-56, 21 August, 2022 nomer nomer is a command-line application for working with taxonomic resources offline. nomer incorporates many of the present taxonomic catalogs (e.g., catalog of life, ITIS, EOL, NCBI) and provides simple tools for comparing between resources or resolving taxonomic names based on one or more taxonomic name catalogs. Discover Life is in nomer version 0.5.1 and this full dataset can be recreated by installing nomer from https://github.com/globalbioticinteractions/nomer and running $ nomer list discoverlife > discoverlife.tsv Data Columns Discover Life provides a world name checklist and includes other names (synonyms and homonyms) that refer to the same species. In the tsv file, the provided name is both the accepted, or checklist name, or "other name." All names will be listed as a providedName. Below is an example subset of the transformed version of the data. providedExternalId= link to name on Discover Life providedName=an accepted or "other name" in the Discover Life bee checklist. "Other names" can be synonyms or homonyms. providedAuthorship=authorship for the providedName providedRank=rank of the providedName providedPath=higher taxonomy of the providedName. This will be the same as the accepted name or resolvedName relationName=relationship between the "other name" and the bee name in the Discover Life checklist. It may include itself resolvedExternalID=an accepted name in the Discover Life bee checklist resolvedExternalId=link to name on Discover Life resolvedAuthorship=authorship of the accepted, or checklist name resolvedRank=rank of the accepted, or checklist name resolvedPath=higher taxonomy of the accepted, or checklist name Changes No major changes to format in this version. References Jorrit Poelen, & José Augusto Salim. (2022). globalbioticinteractions/nomer: (0.2.11). Zenodo. https://doi.org/10.5281/zenodo.6128011 Poelen JH, Simons JD and Mungall CH. (2014). Global Biotic Interactions: An open infrastructure to share and analyze species-interaction datasets. Ecological Informatics. https://doi.org/10.1016/j.ecoinf.2014.08.005. Seltmann KC, Allen J, Brown BV, Carper A, Engel MS, Franz N, Gilbert E, Grinter C, Gonzalez VH, Horsley P, Lee S, Maier C, Miko I, Morris P, Oboyski P, Pierce NE, Poelen J, Scott VL, Smith M, Talamas EJ, Tsutsui ND, Tucker E (2021) Announcing Big-Bee: An initiative to promote understanding of bees through image and trait digitization. Biodiversity Information Science and Standards 5: e74037. https://doi.org/10.3897/biss.5.74037 Dorey, J.B., Fischer, E.E., Chesshire, P.R. et al. A globally synthesised and flagged bee occurrence dataset and cleaning workflow. Sci Data 10, 747 (2023). https://doi.org/10.1038/s41597-023-02626-w 
    more » « less
  2. null (Ed.)
    A wealth of information about how parasites interact with their hosts already exists in collections, scientific publications, specialized databases, and grey literature. The US National Science Foundation-funded Terrestrial Parasite Tracker Thematic Collection Network (TPT) project began in 2019 to help build a comprehensive picture of arthropod ectoparasites including the evolution of these parasite-host biotic associations, distributions, and the ecological interactions of disease vectors. TPT is a network of biodiversity collections whose data can assist scientists, educators, land managers, and policymakers to better understand the complex relationship between hosts and parasites including emergent properties that may explain the causes and frequency of human and wildlife pathogens. TPT member collections make their association information easier to access via Global Biotic Interactions (GloBI, Poelen et al. 2014), which is periodically archived through Zenodo to track progress in the TPT project. TPT leverages GloBI's ability to index biotic associations from specimen occurrence records that come from existing management systems (e.g., Arctos, Symbiota, EMu, Excel, MS Access) to avoid having to completely rework existing, or build new, cyber-infrastructures before collections can share data. TPT-affiliated collection managers use collection-specific translation tables to connect their verbatim (or original) terms used to describe associations (e.g., "ex", "found on", "host") to their interpreted, machine-readable terms in the OBO Relations Ontology (RO). These interpreted terms enable searches across previously siloed association record sets, while the original verbatim values remain accessible to help retain provenance and allow for interpretation improvements. TPT is an ambitious project, with the goal to database label data from over 1.2 million specimens of arthropod parasites of vertebrates coming from 22 collections across North America. In the first year of the project, the TPT collections created over 73,700 new records and 41,984 images. In addition, 17 TPT data providers and three other collaborators shared datasets that are now indexed by GloBI, visible on the TPT GloBI project page. These datasets came from collection specimen occurrence records and literature sources. Two TPT data archives that capture and preserve the changes in the data coming from TPT to GloBI were published through Zenodo (Poelen et al. 2020a, Poelen et al. 2020b). The archives document the changes in how data are shared by collections including the biotic association data format and quantity of data captured. The Poelen et al. 2020b report included all TPT collections and biotic interactions from Arctos collections in VertNet and the Symbiota Collection of Arthropods Network (SCAN). The total number of interactions included in this report was 376,671 records (500,000 interactions is the overall goal for TPT). In addition, close coordination with TPT collection data managers including many one-on-one conversations, a workshop, and a webinar (Sullivan et al. 2020) was conducted to help guide the data capture of biotic associations. GloBI is an effective tool to help integrate biotic association data coming from occurrence records into an openly accessible, global, linked view of existing species interaction records. The results gleaned from the TPT workshop and Zenodo data archives demonstrate that minimizing changes to existing workflows allow for custom interpretation of collection-specific interaction terms. In addition, including collection data managers in the development of the interaction term vocabularies is an important part of the process that may improve data sharing and the overall downstream data quality. 
    more » « less
  3. {"Abstract":["We report a dataset of all known and published occurrence records of animals of the phylum Rotifera, including Bdelloidea, Monogononta, and Seisonacea (with the exclusion of Acanthocephala) for Africa and surrounding islands and archipelagos. The dataset includes 27,225 records of 957 taxa (subspecies: 39; species: 819; genus: 81; family: 17; group: 1), gathered from 706 published papers. The published literature spans from 1854 to 2022, with the highest number of records in the decades 1990-1999 and 2010-2019. \n230 records of "species inquirendae", "nomina nuda", and "genera inquirenda" found in the published literature were not included in the dataset. Almost 90 % of the data are georeferenced.<\/p>\nThe African countries with the highest number of taxa are Nigeria, Algeria, South Africa, and Democratic Republic of the Congo, whereas no records are yet available for a dozen countries. The number of species known from each country can be explained mostly by sampling efforts, measured as the number of papers published for each country up to October 2022.<\/p>\nThis detailed literature search increased the number of known rotifer taxa at species, subspecies, form and variety level reported in previous reviews, which were 639 in 1986 (De Ridder, 1986) and 765 (Smolak et al., 2022) in 2022. Of the taxa reported in the current dataset, 167 (18%) are Bdelloidea, 665 (698%) Ploima, 97 (10%) Flosculariaceae, 27 (3%) Collothecacea and one representative of Seisonacea, the marine epizoic rotifer Seison africanus Sørensen, Segers & Funch, 2005 described and recorded only from coastal waters of Kenya (Sørensen et al., 2005).<\/p>\nThe data were structured based on the Darwin Core standard (Wieczorek et al., 2012). The dataset is structured to have in each row each record of a rotifer taxon from a sample from Africa and surrounding islands, as cited in the literature. The columns report the original and updated taxon name, additional taxonomic information together with origin of the data and habitat.\nAll invalid names (i.e. at the level of species inquirenda, nomen nudum, genus inquirendum) were not included in the records uploaded to GBIF. All names were also checked against the backbone of GBIF.<\/p>"]} 
    more » « less
  4. null (Ed.)
    Abstract: As the web of biodiversity knowledge continues to grow and become more complex, practical questions arise: How do we publish and review works that use big and complex datasets? How do we keep track of data use across biodiversity data networks? How do we keep our digital data available for the next 50 years? In this iDigBio lunch seminar, Jorrit Poelen works towards answering these questions through use cases taken from Global Biotic Interactions (GloBI, https://globalbioticinteractions.org), Terrestrial Parasite Tracker TCN (TPT, https://parasitetracker.org) and Preston (https://preston.guoda.bio), a biodiversity data tracker. 
    more » « less
  5. All life on earth is linked by a shared evolutionary history. Even before Darwin developed the theory of evolution, Linnaeus categorized types of organisms based on their shared traits. We now know these traits derived from these species’ shared ancestry. This evolutionary history provides a natural framework to harness the enormous quantities of biological data being generated today. The Open Tree of Life project is a collaboration developing tools to curate and share evolutionary estimates (phylogenies) covering the entire tree of life (Hinchliff et al. 2015, McTavish et al. 2017). The tree is viewable at https://tree.opentreeoflife.org, and the data is all freely available online. The taxon identifiers used in the Open Tree unified taxonomy (Rees and Cranston 2017) are mapped to identifiers across biological informatics databases, including the Global Biodiversity Information Facility (GBIF), NCBI, and others. Linking these identifiers allows researchers to easily unify data from across these different resources (Fig. 1). Leveraging a unified evolutionary framework across the diversity of life provides new avenues for integrative wide scale research. Downstream tools, such as R packages developed by the R OpenSci foundation (rotl, rgbif) (Michonneau et al. 2016, Chamberlain 2017) and others tools (Revell 2012), make accessing and combining this information straightforward for students as well as researchers (e.g. https://mctavishlab.github.io/BIO144/labs/rotl-rgbif.html). Figure 1. Example linking phylogenetic relationships accessed from the Open Tree of Life with specimen location data from Global Biodiversity Information Facility. For example, a recent publication by Santorelli et al. 2018 linked evolutionary information from Open Tree with species locality data gathered from a local field study as well as GBIF species location records to test a river-barrier hypothesis in the Amazon. By combining these data, the authors were able test a widely held biogeographic hypothesis across 1952 species in 14 taxonomic groups, and found that a river that had been postulated to drive endemism, was in fact not a barrier to gene flow. However, data provenance and taxonomic name reconciliation remain key hurdles to applying data from these large digital biodiversity and evolution community resources to answering biological questions. In the Amazonian river analysis, while they leveraged use of GBIF records as a secondary check on their species records, they relied on their an intensive local field study for their major conclusions, and preferred taxon specific phylogenetic resources over Open Tree where they were available (Santorelli et al. 2018). When Li et al. 2018 assessed large scale phylogenetic approaches, including Open Tree, for measuring community diversity, they found that synthesis phylogenies were less resolved than purpose-built phylogenies, but also found that these synthetic phylogenies were sufficient for community level phylogenetic diversity analyses. Nonetheless, data quality concerns have limited adoption of analyses data from centralized resources (McTavish et al. 2017). Taxonomic name recognition and reconciliation across databases also remains a hurdle for large scale analyses, despite several ongoing efforts to improve taxonomic interoperability and unify taxonomies, such at Catalogue of Life + (Bánki et al. 2018). In order to support innovative science, large scale digital data resources need to facilitate data linkage between resources, and address researchers' data quality and provenance concerns. I will present the model that the Open Tree of Life is using to provide evolutionary data at the scale of the entire tree of life, while maintaining traceable provenance to the publications and taxonomies these evolutionary relationships are inferred from. I will discuss the hurdles to adoption of these large scale resources by researchers, as well as the opportunities for new research avenues provided by the connections between evolutionary inferences and biodiversity digital databases. 
    more » « less