skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Supporting and Sustaining Equitable STEAM Activities in High School Classrooms: Understanding Computer Science Teachers’ Needs and Practices When Implementing an E-Textiles Curriculum to Forge Connections across Communities
While the last two decades have seen an increased interest in STEAM (science, technology, engineering, arts, and mathematics) in K-12 schools, few efforts have focused on the teachers and teaching practices necessary to support these interventions. Even fewer have considered the important work that teachers carry out not just inside classrooms but beyond the classroom walls to sustain such STEAM implementation efforts, from interacting with administrators to recruiting students and persuading parents about the importance of arts and computer science. In order to understand teachers’ needs and practices regarding STEAM implementation, in this paper, we focus on eight experienced computer science teachers’ reflections on implementing a STEAM unit using electronic textiles, which combine crafting, circuit design, and coding so as to make wearable artifacts. We use a broad lens to examine the practices high school teachers employed not only in their classrooms but also in their schools and communities to keep these equitable learning opportunities going, from communicating with other teachers and admins to building a computer science (CS) teacher community across district and state lines. We also analyzed these reflections to understand teachers’ own social and emotional needs—needs important to staying in the field of CS education—better, as they are relevant to engaging with learning new content, applying new pedagogical skills, and obtaining materials and endorsements from their organizations to bring STEAM into their classrooms. In the discussion, we contemplate what teachers’ reported practices and needs say about supporting and sustaining equitable STEAM in classrooms.  more » « less
Award ID(s):
2031168 2031244
PAR ID:
10437385
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Sustainability
Volume:
15
Issue:
11
ISSN:
2071-1050
Page Range / eLocation ID:
8468
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Research literature has documented how computer science (CS) teachers are often isolated in their schools and are less likely to collaborate as compared to other subject area teachers. This parallels an emerging body of literature around how teachers leverage professional development opportunities to engage in their practice. However, limited research has empirically studied how professional development opportunities lead to increases in teacher empowerment and spur broadening participation in CS efforts. In this study, we report on a networked improvement community (NIC) focused on connecting CS teachers to their peers, national experts, professional development providers, and researchers to impact teaching practices and guide implementation of policies that lead to increased female participation in CS courses. We report on the role of the NIC to support teachers as school and community change agents. Drawing from focus groups with participating teachers (n=20), we report on a two-year process of learning that involved identifying root causes for female underrepresentation and conducting teacher-led interventions within their classrooms and schools. We detail how a NIC offers a novel approach to facilitate collaboration and empower teachers to implement changes that can impact girls in computer science. Initial data indicate that the collaborative nature of the NIC and its teacher-directed approach to change led to a newfound sense of ownership and empowerment in NIC teachers for addressing the challenge of increasing female participation in CS. 
    more » « less
  2. Background and Context: Most large-scale statewide initiatives of the Computer Science for All (CS for All) movement have focused on the classroom level. Critical questions remain about building school and district leadership capacity to support teachers while implementing equitable computer science education that is scalable and sustainable. Objective: This statewide research-practice partnership, involving university researchers and school leaders from 14 local education agencies (LEA) from district and county offices, addresses the following research question: What do administrators identify as most helpful for understanding issues related to equitable computer science implementation when engaging with a guide and workshop we collaboratively developed to help leadership in such efforts? Method: Participant surveys, interviews, and workshop observations were analyzed to understand best practices for professional development supporting educational leaders. Findings: Administrators value computer science professional development resources that: (a) have a clear focus on “equity;” (b) engage with data and examples that deepen understandings of equity; (c) provide networking opportunities; (d) have explicit workshop purpose and activities; and (e) support deeper discussions of computer science implementation challenges through pairing a workshop and a guide. Implications: Utilizing Ishimaru and Galloway’s (2014) framework for equitable leadership practices, this study offers an actionable construct for equitable implementation of computer science including (a) how to build equity leadership and vision; (b) how to enact that vision; and (c) how to scale and sustain that vision. While this construct applies to equitable leadership practices more broadly across all disciplines, we found its application particularly useful when explicitly focused on equity leadership practices in computer science. 
    more » « less
  3. In K-12 education, nearly all e"orts focused on expanding computer science education center on the induction of new computer science teachers, with very little attention given to support the ongoing needs of experienced computer science teachers. More seasoned teachers bene!t from deepening their content knowledge, peda gogical practices, and knowledge and capacity to provide equitable and inclusive learning experiences that results in students feeling a sense of belonging in computer science. This panel will discuss (a) the needs of experienced CS teachers from a variety of perspectives, including teacher education researchers, professional development leaders, and high school practitioners and teacher facilitator, and (b) collectively outline a research and practice agenda that focuses on supporting, retaining, and further developing experienced teachers through expanded professional development, leadership opportuni ties, and community for CS teachers. 
    more » « less
  4. null (Ed.)
    Equity is arguably an agreed upon value within the Computer Science education (CSed) community, and perhaps even more so within efforts to universalize access to CSed within K12 settings through emerging `CS for All' initiatives. However, stakeholders often mean different things when referring to equity, with important implications for what CS teaching and learning looks like in schools. In this paper, we explore the question of how K12 school district actors' conceptualizations of equity manifest within their planning and implementation of district-wide CSed initiatives. Based on a research-practice partnership aimed at supporting and researching district-wide CSed initiatives, data presented - interviews with district faculty, district planning documents, meeting transcripts and field observations - were drawn from five participating school districts as they made decisions and enacted activities over 11 months in areas including vision-setting, curriculum, professional development, leadership efforts and use of formative data about implementation. Analyzing these data through equity frameworks found in CSed literature, we highlight three distinct but interconnected ways that district actors conceptualized equity within their CSed initiatives: (1) equity in who Computer Science is for, (2) equity in how Computer Science is taught, and (3) equity in what Computer Science is taught. Data show that these varied conceptualizations resulted in different kinds of decisions about CSed in districts. We discuss the implications of these findings in terms of their relevance to equity-oriented CS education researchers, and what lessons they hold for policy-makers and education leaders engaged in their own efforts to support equitable computer science education. 
    more » « less
  5. Massachusetts defined K-12 Digital Literacy/Computer Science (DLCS) standards in 2016 and developed a 5-12 teacher licensure process, expecting K-4 teachers to be capable of teaching to the standards under their elementary license. An NSF CSforAll planning grant led to the establishment of an NSF 4-year ResearchPractice Partnership (RPP) of district and school administrators, teachers, university researchers, and external evaluators in 2018. The RPP focused on the 33 K-5 serving schools to engage all students in integrated CS/CT teaching and learning and to create a cadre of skilled and confident elementary classroom teachers ready to support their students in learning CS/CT concepts and practices. The pandemic exacerbated barriers and inequities across the district, which serves over 25,000 diverse students (9.7% white/nonHispanic, 83.7% high needs). Having observed a lack of awareness and expertise among many K-5 teachers for implementing CS/CT content and practices and seeing barriers to equitable CS/CT teaching and learning, the RPP designed an iterative, teacher-led, co-design of curriculum supported by equity-focused and embedded professional learning. This experience report describes how we refined our strategies for curriculum development and diffusion, professional learning, and importantly, our commitment to addressing diversity, equity, and inclusion beyond just reaching all students. The RPP broadened its focus on understanding race and equity to empower students to understand how technology affects their identities and to equip them to critically participate in the creation and use of technology 
    more » « less