- PAR ID:
- 10437385
- Date Published:
- Journal Name:
- Sustainability
- Volume:
- 15
- Issue:
- 11
- ISSN:
- 2071-1050
- Page Range / eLocation ID:
- 8468
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Research literature has documented how computer science (CS) teachers are often isolated in their schools and are less likely to collaborate as compared to other subject area teachers. This parallels an emerging body of literature around how teachers leverage professional development opportunities to engage in their practice. However, limited research has empirically studied how professional development opportunities lead to increases in teacher empowerment and spur broadening participation in CS efforts. In this study, we report on a networked improvement community (NIC) focused on connecting CS teachers to their peers, national experts, professional development providers, and researchers to impact teaching practices and guide implementation of policies that lead to increased female participation in CS courses. We report on the role of the NIC to support teachers as school and community change agents. Drawing from focus groups with participating teachers (n=20), we report on a two-year process of learning that involved identifying root causes for female underrepresentation and conducting teacher-led interventions within their classrooms and schools. We detail how a NIC offers a novel approach to facilitate collaboration and empower teachers to implement changes that can impact girls in computer science. Initial data indicate that the collaborative nature of the NIC and its teacher-directed approach to change led to a newfound sense of ownership and empowerment in NIC teachers for addressing the challenge of increasing female participation in CS.more » « less
-
Abstract Background To inform STEM education for benefiting emerging bilingual (EB) and English fluent (EF) students, the present study evaluated the order effects of integrating science and arts within a large-scale, ongoing effort investigating the efficacies of Next Generation Science Standards (NGSS)-aligned Science Technology, Engineering, and Math (STEM) methodologies to provide more equitable opportunities to students to learn science through Arts integration (STEAM). The experiment examines the curriculum integrating order of implementing combinations of STEM and STEAM approaches in fifth grade life and physical science instruction, comparing (STEM → STEAM) vs (STEAM → STEM).
Results T tests and a three-way between-groups analysis of covariance examined the impact of instructional order, language fluency, and teachers’ implementation fidelity. Findings indicate similar results in life and physical sciences, in which the STEAM first approach produced significantly higher science learning gains for both EF and EB students, revealing some higher learning gains for EF students, but with greater STEAM first order effect advantages for EB students overall. While EF students show higher learning gain scores in the high fidelity classrooms, the advantage of the STEAM first order is greater for EB students in all classroom fidelity levels and even within low to moderate implementation fidelity classrooms, as may commonly occur, such that the integration order of STEAM before STEM strategy is particularly advantageous to EB learners.Conclusions The integration pattern of leading with STEAM and following with STEM offers an important opportunity to learn for EB students, and increases equity in opportunities to learn among EB and EF learners of science. Both EB and EF students benefit similarly and significantly in high fidelity implementation classrooms. However, the gains for EF students are not significant in low fidelity implementation classrooms, while in such low fidelity implementation classrooms, the EB students still benefited significantly despite the poor implementation. These results suggest that a strong compensating STEAM first order effect advantage is possibly involved in the implementation system for the EB population of learners. Teaching science through the arts with STEAM lessons is an effective approach that can be significantly improved through introducing STEM units with the STEAM first order effect advantage.
-
In K-12 education, nearly all e"orts focused on expanding computer science education center on the induction of new computer science teachers, with very little attention given to support the ongoing needs of experienced computer science teachers. More seasoned teachers bene!t from deepening their content knowledge, peda gogical practices, and knowledge and capacity to provide equitable and inclusive learning experiences that results in students feeling a sense of belonging in computer science. This panel will discuss (a) the needs of experienced CS teachers from a variety of perspectives, including teacher education researchers, professional development leaders, and high school practitioners and teacher facilitator, and (b) collectively outline a research and practice agenda that focuses on supporting, retaining, and further developing experienced teachers through expanded professional development, leadership opportuni ties, and community for CS teachers.more » « less
-
Background and Context: Most large-scale statewide initiatives of the Computer Science for All (CS for All) movement have focused on the classroom level. Critical questions remain about building school and district leadership capacity to support teachers while implementing equitable computer science education that is scalable and sustainable.
Objective: This statewide research-practice partnership, involving university researchers and school leaders from 14 local education agencies (LEA) from district and county offices, addresses the following research question: What do administrators identify as most helpful for understanding issues related to equitable computer science implementation when engaging with a guide and workshop we collaboratively developed to help leadership in such efforts?
Method: Participant surveys, interviews, and workshop observations were analyzed to understand best practices for professional development supporting educational leaders.
Findings: Administrators value computer science professional development resources that: (a) have a clear focus on “equity;” (b) engage with data and examples that deepen understandings of equity; (c) provide networking opportunities; (d) have explicit workshop purpose and activities; and (e) support deeper discussions of computer science implementation challenges through pairing a workshop and a guide.
Implications: Utilizing Ishimaru and Galloway’s (2014) framework for equitable leadership practices, this study offers an actionable construct for equitable implementation of computer science including (a) how to build equity leadership and vision; (b) how to enact that vision; and (c) how to scale and sustain that vision. While this construct applies to equitable leadership practices more broadly across all disciplines, we found its application particularly useful when explicitly focused on equity leadership practices in computer science.
-
null (Ed.)Equity is arguably an agreed upon value within the Computer Science education (CSed) community, and perhaps even more so within efforts to universalize access to CSed within K12 settings through emerging `CS for All' initiatives. However, stakeholders often mean different things when referring to equity, with important implications for what CS teaching and learning looks like in schools. In this paper, we explore the question of how K12 school district actors' conceptualizations of equity manifest within their planning and implementation of district-wide CSed initiatives. Based on a research-practice partnership aimed at supporting and researching district-wide CSed initiatives, data presented - interviews with district faculty, district planning documents, meeting transcripts and field observations - were drawn from five participating school districts as they made decisions and enacted activities over 11 months in areas including vision-setting, curriculum, professional development, leadership efforts and use of formative data about implementation. Analyzing these data through equity frameworks found in CSed literature, we highlight three distinct but interconnected ways that district actors conceptualized equity within their CSed initiatives: (1) equity in who Computer Science is for, (2) equity in how Computer Science is taught, and (3) equity in what Computer Science is taught. Data show that these varied conceptualizations resulted in different kinds of decisions about CSed in districts. We discuss the implications of these findings in terms of their relevance to equity-oriented CS education researchers, and what lessons they hold for policy-makers and education leaders engaged in their own efforts to support equitable computer science education.more » « less