skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A window to the Early Cretaceous North American Climate and Environment: The ‘Lake Carpenter’ lacustrine strata of the Cedar Mountain Formation
The Cedar Mountain Formation is thought to span a significant portion of the lower Cretaceous and the base of the upper Cretaceous (Valanginian to Cenomanian). As such, the Cedar Mountain Formation is important for understanding the transition of terrestrial ecosystems from those characterized by pre-angiosperm ecosystems of the Jurassic to the angiosperm-dominated ecosystems that characterized the height of dinosaur diversity in the later part of the Cretaceous. Lacustrine strata offer unique opportunities to shed light on environmental and climate conditions of the past. This study presents results from a multi-proxy study of lacustrine strata in the Cedar Mountain Formation termed “Lake Carpenter.” The sequence of strata is about ~30 m thick and located near Arches National Park. The lower ~7 m is characterized by dark organic-rich mudstones, shales, and tan limestones and dolostone. The middle portion between about 7 and 25m consists of more massive carbonate-rich strata with abundant aquatic fossils including ostracodes, charophytes, and fish scales. The upper portion to about 30 m consists of green to tan mudstones with carbonate nodules and increases in siliciclastic content. Carbonate mineralogies include calcite, high-magnesium calcite, and dolomite (including dolomicrites) based on XRD analyses. To put the lacustrine sequence into stratigraphic context, bulk organic C isotope values were utilized to construct a chemostratigraphic record. The carbon isotope values range from -32.3‰ to -21.1‰ vs. VPDB. Zircons from four suspected volcanic ash layers were analyzed for U-Pb using LA-ICP-MS. One of these produced concordant Cretaceous dates. The youngest zircons from this sample was analyzed using CA-ID-TIMS and produced a date of 115.65 ± 0.18 Ma. Based on the chemostratigraphic record and the U-Pb date, the deposition of the lacustrine sequence occurs in the mid to late Aptian and spans a time that is thought to have coincided with a cold snap based on marine records. Carbonate analyses of the carbonates within the lacustrine sequence ranges from -9.2‰ to +5.4‰ vs. VPDB for carbon and -9.3 to -0.3‰ vs. VPDB for oxygen. Overall, carbonate isotope data is positively covariant and along with the minerology, seems to suggest that the lake was a closed-basin, alkaline lake and would have likely experience significant evaporation. To investigate paleotemperature, selected samples were analyzed for clumped isotope values (47) to determine temperature of formation. Preliminary temperature estimates of calcite formation range from 27°C to 41°C. Estimates for dolomite range from 19°C to 21°C. Lacustrine carbonate formation typically is biased toward spring and summer and as such some of these temperatures (particularly the values for dolomites) seem slightly lower than expected for a greenhouse climate but may be consistent with a “cold-snap” during the late Aptian. Palustrine carbonates from the type section of the Ruby Ranch Member range 19.8°C to 44.5°C (Suarez et al. 2021) and suggests the lacustrine strata records a similar range in temperatures during the Aptian Stage in this part of North America. REFERENCES CITED: Suarez, MB, Knight, J, Snell, KE, Ludvigson, GA, Kirkland, JI, Murphy, L 2020. Multiproxy paleoclimate estimates of the continental Cretaceous Ruby Ranch Member of the Cedar Mountain Formation. In: Bojar, A-V, Pelc., A, Lecuyer, C, editors. Stable Isotopes Studies of Water Cycle and Terrestrial Environments. Geol Soc, London, Spec Pub, 507: https://doi.org/10.1144/SP507-2020-85 KEYWORDS: Early Cretaceous, lacustrine, stable isotopes, paleoclimate Presentation Mode: Invited Speaker  more » « less
Award ID(s):
1925942 1941017
PAR ID:
10437392
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Anatomical record Supplement
Volume:
306
Issue:
1
ISSN:
0749-3002
Page Range / eLocation ID:
241-242
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Introduction:The Yucca Formation is a Lower Cretaceous sedimentary unit present in West Texas. Based on its relative stratigraphic position in the Cretaceous succession of West Texas, it is expected that the Yucca Formation is of Albian and/or Aptian age. It is also expected that the carbon isotope excursions associated with OAE 1a and OAE 1b should be identified in the Yucca Formation. The goals of this project are to 1. construct a carbon isotope chemostratigraphic record of the Yucca Formation, and 2. correlate the Yucca Formation with strata of similar age using chemostratigraphy. Methods:163 samples were collected from Big Bend Ranch State Park (BBRSP) to determine the δ13C value of bulk sedimentary organic matter. Results:C-isotope values range from −27.02‰ to −18.42‰. Discussion:Carbon isotope excursions (CIEs) that are associated with the Aptian-Albian Boundary are identified as well as CIEs associated with Oceanic Anoxic Events (1a and 1b). This allows us to conclude that the Aptian-Albian boundary is recorded within the Yucca Formation strata at about 71 m above the base of the section exposed in the Lower Shutup of the Solitario in Big Bend Ranch State Park. Regional correlation of the Yucca Formation to other chemostratigraphic records from other Cretaceous strata suggests that the Yucca Formation in BBRSP is time equivalent to the Sligo, Pine Island, James, Bexar, and a portion of the lower Glen Rose Formation on the Comanche Platform and to a portion of the lower Glen Rose Formation in Big Bend National Park. 
    more » « less
  2. The Great Bank of Guizhou (GBG) is an isolated carbonate platform in the Nanpanjiang Basin. Contacts between limestone and dolomitized material cross-cut bedding and form an irregular lobe shaped body that extends from the interior and terminates toward the basin. Precursor carbonate facies include oolite grainstone and packstone (with some containing a microbial matrix), clotted microbialite boundstone, and massively dolomitized carbonate mudstone containing stromatolitic and fenestral fabrics indicating a range of high-energy subtidal shoal to intertidal tidal flat environments. The mudstones are present lower in the outcrop, followed by grainstones and packstones moving upwards. Samples range from partially to fully dolomitized, with partially dolomitized samples occurring near the dolomitization front. In partially dolomitized oolite, the ooids are selectively replaced by dolomite. The paragenetic sequence interpreted from petrography includes early marine intergranular cement, early fracturing associated with possible tepee formation, neomorphism of aragonitic mollusk shells and cortical laminae in ooids, anhedral replacement dolomite, dissolution forming dissolved ooids and vugs, late stage coarse euhedral dolomite cement within intergranular pores, vugs, and early fractures, twinned calcite fill of early fractures and vugs, late stage fractures filled with twinned calcite, and finally stylolites. Previous data from the western GBG using fluid inclusion and clumped isotope geothermometry indicates that dolomitization occurred with high temperatures at burial, within a spatially variable range of 90°C to 185°C. 87Sr/86Sr values of 0.707677 to 0.708601 are similar to the ratios found in Triassic seawater. δ18O (VPDB) values for dolomite range from -7.68‰ to -1.53‰, consistent with evaporative enrichment of seawater and high burial temperatures. The spatial distribution of the dolomite, strontium isotopes and oxygen isotopes are consistent with reflux dolomitization. In other areas, the platform interior contains evidence for hypersaline conditions and evaporite mineral precipitation also consistent with the reflux model. The geothermometry data indicates that early reflux dolomite was replaced at high temperatures during burial. 
    more » « less
  3. The Yangtze Platform borders the Nanpanjiang Basin on its north and west. During the Early Triassic the platform evolved from low-relief ramp with oolitic margins to a steepening platform with a relatively flat-topped geometry with margin shoals and evaporitic interior facies. At the Zhenfeng margin the precursor depositional facies include: oolitic grainstone to packstone, skeletal peloidal packstone, clotted microbialites and fenestral laminites. The Anshun strata range from undolomitized to partially dolomitized oolite and microbial facies to partially and completely dolomitized facies such as fenestral laminites. Dolomitization changes upward through the section with fenestral laminate facies being more pervasively dolomitized than the oolitic and skeletal packstone facies. The diagenetic evolution (paragenetic sequence includes: neomorphic alteration of aragonite, marine cementation, replacement dolomite, euherdral dolomites, saddle dolomites, calcite veins, stylolites, and late-stage fractures with calcite and oxide fill. Previous data from the Yangtze Platform include dolomite showing δ¹⁸O values ranging from -7.7‰ to 0.75‰ (VPDB) and δ ¹³C values ranging from 0.77‰ to 4.0‰ (VPDB). Vein calcite values range from δ ¹⁸O -18.4‰ to -5.2‰ and δ ¹³C -6.1 to 3.4‰. ⁸⁷Sr/⁸⁶Sr values from dolomite ranges from 0.707677 to 0.708601 with the exception of elevated ⁸⁷Sr/⁸⁶Sr in three samples. Homogenization temperatures (Th) and freezing point depressions (Tmice) from primary fluid inclusion assemblages from dolomite crystals indicate entrapment of saline brines (9.5 to 16 wt. % NaCl) over temperatures of 80-185°C. The preferential dolomitization of mud-rich platform interior facies and preservation of oolitic limestone facies at the platform margin points to interior derived dolomitizing fluids consistent with evaporative reflux. The range in δ ¹⁸O is consistent with enrichment by evaporative concentration of seawater, but also includes negative values consistent with high temperature fluids. ⁸⁷Sr/⁸⁶Sr values in dolomite are consistent with modified seawater including a radiogenic contribution of hydrothermal fluids. The geothermometric data, oxygen isotope values and radiogenic Sr contribution indicates that early dolomites were recrystallized at high temperatures by burial fluids. 
    more » « less
  4. null (Ed.)
    Abstract Carbonate lacustrine strata in nonmarine systems hold great potential for refining depositional ages through U-Pb dating of detrital zircons. The low clastic sediment flux in carbonate depositional environments may increase the relative proportion of zircons deposited by volcanic air fall, potentially increasing the chances of observing detrital ages near the true depositional age. We present U-Pb geochronology of detrital zircons from lacustrine carbonate strata that provides proof of concept for the effectiveness of both acid-digestion recovery and resolving depositional ages of nonmarine strata. Samples were collected from Early Cretaceous foreland basin fluvial sandstone and lacustrine carbonate in southwestern Montana (USA). Late Aptian–early Albian (ca. 115–110 Ma) maximum depositional ages young upsection and agree with biostratigraphic ages. Lacustrine carbonate is an important component in many types of tectonic basins, and application of detrital zircon U-Pb geochronology holds considerable potential for dating critical chemical and climatic events recorded in their stratigraphy. It could also reveal new information for the persistent question about whether the stratigraphic record is dominated by longer periods of background fine-grained sedimentation versus short-duration coarse-grained events. In tectonically active basins, lacustrine carbonates may be valuable for dating the beginning of tectonic subsidence, especially during periods of finer-grained deposition dominated by mudrocks and carbonates. 
    more » « less
  5. The Whitehorse Group and Quartermaster Formation are extensive red-bed terrestrial sequences representing the final episode of sedimentation in the Palo Duro Basin in north-central Texas, U.S.A. Regionally, these strata record the culmination of a long-term regression sequence beginning in the middle to late Permian. The Whitehorse Group includes beds of abundant laminated to massive red quartz siltstone to fine sandstone and rare dolomite, laminated to massive gypsum, and claystones, as well as diagenetic gypsum. The Quartermaster Formation exhibits a change from nearly equal amounts of thin planar and lenticular fine sandstone and laminated to massive mudstone in its lower half to overlying strata with coarser-grained, cross-bedded sandstones indicative of meandering channels up to 7 m deep and rare overbank mudstones. Paleosols are absent in the Upper Whitehorse Group and only poorly developed in the Quartermaster Formation. Volcanic ash-fall deposits (tuffs) present in uppermost Whitehorse Group and lower Quartermaster Formation strata permit correlation among five stratigraphic sections distributed over ∼150 km and provide geochronologic age information for these rocks. Both the Whitehorse Group and Quartermaster Formation have traditionally been assigned to the late Permian Ochoan (Changhsingian) stage, and workers assumed that the Permian-Triassic boundary is characterized by a regionally significant unconformity. Chemostratigraphic or biostratigraphic evidence for this age assignment, however, have been lacking to date. Single zircon U-Pb CA-TIMS analyses from at least two distinct volcanic ash fall layers in the lower Quartermaster Formation, which were identified and collected from five different localities across the Palo Duro Basin, yield interpreted depositional ages ranging from 252.19 ± 0.30 to 251.74 ± 0.28 Ma. Single zircon U-Pb CA-TIMS analyses of detrital zircons from sandstones located only a few meters beneath the top of the Quartermaster Formation yield a range of dates from Mesoproterozoic (1418 Ma) to Middle Triassic (244.5 Ma; Anisian), the latter of which is interpreted as a maximum depositional age, which is no older than Anisian, thus indicating the Permian-Triassic boundary to lie somewhere within the lower Quartermaster Formation/upper Whitehorse Group succession. Stable carbon isotope data from 180 samples of early-burial dolomicrite cements preserve a chemostratigraphic signal that is similar among sections, with a large ∼−8‰ negative isotope excursion ∼20 m beneath the Whitehorse Group-Quartermaster Formation boundary. This large negative carbon isotope excursion is interpreted to be the same excursion associated with the end-Permian extinction and this is in concert with the new high precision radioisotopic age data presented and the fact that the excursion lies within a normal polarity stratigraphic magnetozone. Dolomite cement δ 13 C values remain less negative (between about −5 and −8 permil) into the lower part of the Quartermaster Formation before becoming more positive toward the top of the section. This long interval of negative δ 13 C values in the Quartermaster Formation is interpreted to represent the earliest Triassic (Induan) inception of biotic and ecosystem “recovery.” Oxygen isotope values of dolomicrite cements show a progressive trend toward more positive values through the boundary interval, suggesting substantially warmer conditions around the end-Permian extinction event and a trend toward cooler conditions after the earliest Triassic. Our observations on these strata show that the paleoenvironment and paleoclimate across the Permian-Triassic boundary in western, sub-equatorial Pangea was characterized by depositional systems that were not conducive to plant preservation. 
    more » « less