Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Introduction: The Yucca Formation is a Lower Cretaceous sedimentary unit present in West Texas. Based on its relative stratigraphic position in the Cretaceous succession of West Texas, it is expected that the Yucca Formation is of Albian and/or Aptian age. It is also expected that the carbon isotope excursions associated with OAE 1a and OAE 1b should be identified in the Yucca Formation. The goals of this project are to 1. construct a carbon isotope chemostratigraphic record of the Yucca Formation, and 2. correlate the Yucca Formation with strata of similar age using chemostratigraphy.Methods: 163 samples were collected from Big Bend Ranch State Park (BBRSP) to determine the δ13C value of bulk sedimentary organic matter.Results: C-isotope values range from −27.02‰ to −18.42‰.Discussion: Carbon isotope excursions (CIEs) that are associated with the Aptian-Albian Boundary are identified as well as CIEs associated with Oceanic Anoxic Events (1a and 1b). This allows us to conclude that the Aptian-Albian boundary is recorded within the Yucca Formation strata at about 71 m above the base of the section exposed in the Lower Shutup of the Solitario in Big Bend Ranch State Park. Regional correlation of the Yucca Formation to other chemostratigraphic records from other Cretaceous strata suggests that the Yucca Formation in BBRSP is time equivalent to the Sligo, Pine Island, James, Bexar, and a portion of the lower Glen Rose Formation on the Comanche Platform and to a portion of the lower Glen Rose Formation in Big Bend National Park.Free, publicly-accessible full text available July 3, 2025 -
The Cedar Mountain Formation is thought to span a significant portion of the lower Cretaceous and the base of the upper Cretaceous (Valanginian to Cenomanian). As such, the Cedar Mountain Formation is important for understanding the transition of terrestrial ecosystems from those characterized by pre-angiosperm ecosystems of the Jurassic to the angiosperm-dominated ecosystems that characterized the height of dinosaur diversity in the later part of the Cretaceous. Lacustrine strata offer unique opportunities to shed light on environmental and climate conditions of the past. This study presents results from a multi-proxy study of lacustrine strata in the Cedar Mountain Formation termed “Lake Carpenter.” The sequence of strata is about ~30 m thick and located near Arches National Park. The lower ~7 m is characterized by dark organic-rich mudstones, shales, and tan limestones and dolostone. The middle portion between about 7 and 25m consists of more massive carbonate-rich strata with abundant aquatic fossils including ostracodes, charophytes, and fish scales. The upper portion to about 30 m consists of green to tan mudstones with carbonate nodules and increases in siliciclastic content. Carbonate mineralogies include calcite, high-magnesium calcite, and dolomite (including dolomicrites) based on XRD analyses. To put the lacustrine sequence into stratigraphic context, bulk organic C isotope values were utilized to construct a chemostratigraphic record. The carbon isotope values range from -32.3‰ to -21.1‰ vs. VPDB. Zircons from four suspected volcanic ash layers were analyzed for U-Pb using LA-ICP-MS. One of these produced concordant Cretaceous dates. The youngest zircons from this sample was analyzed using CA-ID-TIMS and produced a date of 115.65 ± 0.18 Ma. Based on the chemostratigraphic record and the U-Pb date, the deposition of the lacustrine sequence occurs in the mid to late Aptian and spans a time that is thought to have coincided with a cold snap based on marine records. Carbonate analyses of the carbonates within the lacustrine sequence ranges from -9.2‰ to +5.4‰ vs. VPDB for carbon and -9.3 to -0.3‰ vs. VPDB for oxygen. Overall, carbonate isotope data is positively covariant and along with the minerology, seems to suggest that the lake was a closed-basin, alkaline lake and would have likely experience significant evaporation. To investigate paleotemperature, selected samples were analyzed for clumped isotope values (47) to determine temperature of formation. Preliminary temperature estimates of calcite formation range from 27°C to 41°C. Estimates for dolomite range from 19°C to 21°C. Lacustrine carbonate formation typically is biased toward spring and summer and as such some of these temperatures (particularly the values for dolomites) seem slightly lower than expected for a greenhouse climate but may be consistent with a “cold-snap” during the late Aptian. Palustrine carbonates from the type section of the Ruby Ranch Member range 19.8°C to 44.5°C (Suarez et al. 2021) and suggests the lacustrine strata records a similar range in temperatures during the Aptian Stage in this part of North America. REFERENCES CITED: Suarez, MB, Knight, J, Snell, KE, Ludvigson, GA, Kirkland, JI, Murphy, L 2020. Multiproxy paleoclimate estimates of the continental Cretaceous Ruby Ranch Member of the Cedar Mountain Formation. In: Bojar, A-V, Pelc., A, Lecuyer, C, editors. Stable Isotopes Studies of Water Cycle and Terrestrial Environments. Geol Soc, London, Spec Pub, 507: https://doi.org/10.1144/SP507-2020-85 KEYWORDS: Early Cretaceous, lacustrine, stable isotopes, paleoclimate Presentation Mode: Invited Speakermore » « less