The Global Wearable market is anticipated to rise at a considerable rate in the next coming years and communication is a fundamental block in any wearable device. In communication, encryption methods are being used with the aid of microcontrollers or software implementations, which are power-consuming and incorporate complex hardware implementation. Internet of Things (IoT) devices are considered as resource-constrained devices that are expected to operate with low computational power and resource utilization criteria. At the same time, recent research has shown that IoT devices are highly vulnerable to emerging security threats, which elevates the need for low-power and small-size hardware-based security countermeasures. Chaotic encryption is a method of data encryption that utilizes chaotic systems and non-linear dynamics to generate secure encryption keys. It aims to provide high-level security by creating encryption keys that are sensitive to initial conditions and difficult to predict, making it challenging for unauthorized parties to intercept and decode encrypted data. Since the discovery of chaotic equations, there have been various encryption applications associated with them. In this paper, we comprehensively analyze the physical and encryption attacks on continuous chaotic systems in resource-constrained devices and their potential remedies. To this aim, we introduce different categories of attacks of chaotic encryption. Our experiments focus on chaotic equations implemented using Chua’s equation and leverages circuit architectures and provide simulations proof of remedies for different attacks. These remedies are provided to block the attackers from stealing users’ information (e.g., a pulse message) with negligible cost to the power and area of the design.
more »
« less
Enhancing Continuous Chaos Communication Using Machine Learning in Resource-Limited Devices
Machine learning is rapidly finding its way into the solving of everyday complex problems. One such application is in the area of chaotic encryption, where machine learning techniques can be used to improve the security and synchronization of encryption algorithms. Chaotic encryption is a technique that uses chaos theory to encrypt messages communicated between a transmitter and a receiver, making them extremely difficult to decipher without the correct decryption key. Here, we first discuss error correction for chaotic synchronization using conventional methods with an accuracy of 86%. We then use machine learning algorithms to reduce the error of the decrypted message extracted by learning patterns in the encrypted message and adjusting the encryption parameters accordingly. Using linear regression, k-mean, and DB-Scan, We present an increase in the original accuracy achieved by the decrypted message. Additionally, we use machine learning algorithms to detect anomalies in encrypted messages. The use of machine learning in chaotic encryption has the potential to greatly improve the security of encryption algorithms.
more »
« less
- Award ID(s):
- 2131156
- PAR ID:
- 10437451
- Date Published:
- Journal Name:
- 2023 IEEE 16th Dallas Circuits and Systems Conference (DCAS)
- Page Range / eLocation ID:
- 1 to 5
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Chaos is an interesting phenomenon for nonlinear systems that emerges due to its complex and unpredictable behavior. With the escalated use of low-powered edge-compute devices, data security at the edge develops the need for security in communication. The characteristic that Chaos synchronizes over time for two different chaotic systems with their own unique initial conditions, is the base for chaos implementation in communication. This paper proposes an encryption architecture suitable for communication of on-chip sensors to provide a POC (proof of concept) with security encrypted on the same chip using different chaotic equations. In communication, encryption is achieved with the help of microcontrollers or software implementations that use more power and have complex hardware implementation. The small IoT devices are expected to be operated on low power and constrained with size. At the same time, these devices are highly vulnerable to security threats, which elevates the need to have low power/size hardware-based security. Since the discovery of chaotic equations, they have been used in various encryption applications. The goal of this research is to take the chaotic implementation to the CMOS level with the sensors on the same chip. The hardware co-simulation is demonstrated on an FPGA board for Chua encryption/decryption architecture. The hardware utilization for Lorenz, SprottD, and Chua on FPGA is achieved with Xilinx System Generation (XSG) toolbox which reveals that Lorenz’s utilization is ~9% lesser than Chua’s.more » « less
-
null (Ed.)The resource-constrained nature of the Internet of Things (IoT) edges, poses a challenge in designing a secure and high-performance communication for this family of devices. Although side-channel resistant ciphers (either block or stream) could guarantee the security of the communication, the energy intensive nature of these ciphers makes them undesirable for lightweight IoT solutions. In this paper, we introduce ExTru, an encrypted communication protocol based on stream ciphers that adds a configurable switching & toggling network (CSTN) to not only boost the performance of the communication in these devices, it also consumes far less energy than the conventional side-channel resistant ciphers. Although the overall structure of the proposed scheme is leaky against physical attacks, we introduce a dynamic encryption mechanism that removes this vulnerability. We demonstrate how each communicated message in the proposed scheme reduces the level of trust. Accordingly, since a specific number of messages, N, could break the communication and extract the key, by using the dynamic encryption mechanism, ExTru can re-initiate the level of trust periodically after T messages where T <; N, to protect the communication against side-channel and scan-based attacks (e.g. SAT attack). Furthermore, we demonstrate that by properly configuring the value of T, ExTru not only increases the strength of security from per “device” to per “message”, it also significantly improves energy saving as well as throughput vs. an architecture that only uses a conventional side-channel resistant block/stream cipher.more » « less
-
Abstract Cryptography is crucial in protecting sensitive information and ensuring secure transactions in a time when data security and privacy are major concerns. Traditional cryptography techniques, which depend on mathematical algorithms and secret keys, have historically protected against data breaches and illegal access. With the advent of quantum computers, traditional cryptography techniques are at risk. In this work, we present a cryptography idea using logical phi-bits, which are classical analogues of quantum bits (qubits) and are supported by driven acoustic metamaterials. The state of phi-bits displays superpositions similar to quantum bits, with complex amplitudes and phases. We present a representation of the state vector of single and multi-phi-bit systems. The state vector of multiple phi-bits system lies in a complex exponentially scaling Hilbert space and is used to encode information or messages. By changing the driving conditions of the metamaterial, the information can be encrypted with exceptional security and efficiency. We illustrate experimentally the practicality and effectiveness of encoding and encryption of a message using a 5 phi-bits system and emphasize the scalability of this approach to anNphi-bits system with the same processing time.more » « less
-
Current IP encryption methods offered by FPGA vendors use an approach where the IP is decrypted during the CAD flow, and remains unencrypted in the bitstream. Given the ease of accessing modern bitstream-to-netlist tools, encrypted IP is vulnerable to inspection and theft from the IP user. While the entire bitstream can be encrypted, this is done by the user, and is not a mechanism to protect confidentiality of 3rd party IP. In this work we present a design methodology, along with a proof-of-concept tool, that demonstrates how IP can remain partially encrypted through the CAD flow and into the bitstream. We show how this approach can support multiple encryption keys from different vendors, and can be deployed using existing CAD tools and FPGA families. Our results document the benefits and costs of using such an approach to provide much greater protection for 3rd party IP.more » « less
An official website of the United States government

