skip to main content


This content will become publicly available on July 19, 2024

Title: Understanding photochemical pathways of laser-induced metal ion reduction through byproduct analysis
Laser-induced reduction of metal ions is attracting increasing attention as a sustainable route to ligand-free metal nanoparticles. In this work, we investigate the photochemical reactions involved in reduction of Ag + and [AuCl 4 ] − upon interaction with lasers with nanosecond and femtosecond pulse duration, using strong-field ionization mass spectrometry and spectroscopic assays to identify stable molecular byproducts. Whereas Ag + in aqueous isopropyl alcohol (IPA) is reduced through plasma-mediated mechanisms upon femtosecond laser excitation, low-fluence nanosecond laser excitation induces electron transfer from IPA to Ag + . Both nanosecond and femtosecond laser excitation of aqueous [AuCl 4 ] − produce reactive chlorine species by Au–Cl bond homolysis. Formation of numerous volatile products by IPA decomposition during both femtosecond and nanosecond laser excitation of [AuCl 4 ] − is attributed to enhanced optical breakdown by the Au nanoparticle products of [AuCl 4 ] − reduction. These mechanistic insights can inform the design of laser synthesis procedures to improve control over metal nanoparticle properties and enhance byproduct yields.  more » « less
Award ID(s):
1900094
NSF-PAR ID:
10437476
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
25
Issue:
28
ISSN:
1463-9076
Page Range / eLocation ID:
18844 to 18853
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Laser photoreduction of metal ions onto graphene oxide (GO) is a facile, environmentally friendly method to produce functional metal–GO nanocomposites for a variety of applications. This work compares Au–GO nanocomposites prepared by photoreduction of [AuCl 4 ] − in aqueous GO solution using laser pulses of nanosecond (ns) and femtosecond (fs) duration. The presence of GO significantly accelerates the [AuCl 4 ] − photoreduction rate, with a more pronounced effect using ns laser pulses. This difference is rationalized in terms of the stronger interaction of the 532 nm laser wavelength and long pulse duration with the GO. Both the ns and fs lasers produce significant yields of sub-4 nm Au nanoparticles attached to GO, albeit with different size distributions: a broad 5.8 ± 1.9 nm distribution for the ns laser and two distinct distributions of 3.5 ± 0.8 and 10.1 ± 1.4 nm for the fs laser. Despite these differences, both Au–GO nanocomposites had the same high catalytic activity towards p -nitrophenol reduction as compared to unsupported 4–5 nm Au nanoparticles. These results point to the key role of GO photoexcitation in catalyzing metal ion reduction and indicate that both ns and fs lasers are suitable for producing functional metal–GO nanocomposites. 
    more » « less
  2. We report the fabrication of Ag–Au cuboctahedral nanoboxes enclosed by {100} and {111} facets, respectively, through the orthogonal deposition of Au on two different facets of Ag cuboctahedra. Specifically, we titrate aqueous HAuCl 4 into an aqueous mixture containing Ag cuboctahedra, ascorbic acid, and NaOH (under basic conditions), in the presence of poly(vinylpyrrolidone) (PVP) and cetyltrimethylammonium chloride (CTAC), respectively. In the case of PVP, the oxidation of Ag was initiated from the {111} facets of the cuboctahedra through the galvanic replacement reaction between Au( iii ) and Ag, accompanied by the deposition of Au onto the {100} facets. Because the dissolved Ag( i ) ions could react with NaOH to form Ag 2 O on the {111} facets and thus terminate the galvanic reaction, the Au( iii ) ions would be further reduced by the ascorbate monoanion (HAsc − ) to generate Au atoms for their continuing deposition on the {100} facets, converting Ag cuboctahedra to Ag@Au {100} cuboctahedra. Upon the etching of Ag from the core, we obtained Ag–Au cuboctahedral nanoboxes enclosed by {100} facets. In contrast, when CTAC was present, the oxidation of Ag through a galvanic reaction could continuously proceed on {100} facets as the dissolved Ag( i ) ions would react with the excessive amount of Cl − ions derived from CTAC to produce soluble AgCl 2 − ions rather than insoluble Ag 2 O. As a result, the dissolved Ag( i ) and Au( iii ) ions would be co-reduced by HAsc − for the generation of Ag and Au atoms, followed by their co-deposition onto {111} facets for the generation of Ag@Au {111} concave cuboctahedra. After the removal of Ag from the core by etching, we obtained Ag–Au {111} cuboctahedral nanoboxes enclosed by {111} facets. Both samples of cuboctahedral nanoboxes exhibited strong optical absorption in the infrared region. Interestingly, the cuboctahedral nanoboxes enclosed by {111} facets showed significantly enhanced catalytic activity toward the reduction of 4-nitrophenol by NaBH 4 relative to their counterparts encased by {100} facets. 
    more » « less
  3. Four macrocyclic hybrid salts with different numbers of benzimidazolium and amine units, [H 2 L][PF 6 ] 2 (L = L 1 , L 2 , L 3 ) and [H 4 L 4 ][PF 6 ] 4 , have been employed as the heterocyclic carbene (NHC) precursors toward new Ag( i )– and Au( i )–NHC complexes. Three trinuclear and one tetranuclear Ag( i ) complexes 1–4 have been obtained from the reactions of the NHC precursors and Ag 2 O in acetonitrile. Four dinuclear Au( i )–NHC complexes 5–8 have been prepared by reacting the NHC precursors and AuCl(SMe 2 ) in the presence of NaOAc in DMF. The molecular structures of all the complexes are established by single-crystal X-ray diffraction studies. The metal ions in the Ag( i ) complexes 1–3 and the Au( i ) complexes 5–7 are coordinated with two macrocyclic NHC ligands to form a sandwiched structure. In contrast, a trinuclear Ag 3 core is located in the cavity of one macrocyclic ligand in [Ag 3 (L 4 )][PF 6 ] 3 ( 4 ). The photoluminescence properties of Au( i ) complexes 5–8 have also been investigated. 
    more » « less
  4. Due to the facile manipulation and non-invasive nature of light-triggered release, it is one of the most potent ways to selectively and remotely deliver a molecular target. Among the various carrier platforms, plasmonic nanoparticles possess advantages such as enhanced cellular uptake and easy loading of “cargo” molecules. Two general strategies are currently utilized to achieve light-induced molecule release from plasmonic nanoparticles. The first uses femtosecond laser pulses to directly break the bond between the nanoparticle and the loaded target. The other requires significant photo-thermal effects to weaken the interaction between the cargo molecules and nanoparticle-attached host molecules. Different from above mechanisms, herein, we introduce a new light-controlled molecular-release method by taking advantage of a plasmon-driven catalytic reaction at the particle surface. In this strategy, we link the target to a plasmon responsive molecule, 4-aminobenzenethiol (4-ABT), through the robust and simple EDC coupling reaction and subsequently load the complex onto the particles via the strong Au–thiol interaction. Upon continuous-wave (CW) laser illumination, the excited surface plasmon catalyzes the formation of 4,4′-dimercaptoazobenzenethiol (DMAB) and simultaneously releases the loaded molecules with high efficiency. This method does not require the use of high-power pulsed lasers, nor does it rely on photo-thermal effects. We believe that plasmon-driven release strategies open a new direction for the designing of next-generation light-triggered release processes. 
    more » « less
  5. Galvanic replacement (GR) of monometallic nanoparticles (NPs) provides a versatile route to interesting bimetallic nanostructures, with examples such as nanoboxes, nanocages, nanoshells, nanorings, and heterodimers reported. The replacement of bimetallic templates by a more noble metal can generate trimetallic nanostructures with different architectures, where the specific structure has been shown to depend on the relative reduction potentials of the participating metals and lattice mismatch between the depositing and template metal phases. Now, the role of reaction stoichiometry is shown to direct the overall architecture of multimetallic nanostructures produced by GR with bimetallic templates. Specifically, the number of initial metal islands deposited on a NP template depends on the reaction stoichiometry. This outcome was established by studying the GR process between intermetallic PdCu (i-PdCu) NPs and either AuCl 2 − (Au 1+ ) or AuCl 4 − (Au 3+ ), producing i-PdCu–Au heterostructures. Significantly, multiple Au domains form in the case of GR with AuCl 2 − while only single Au domains form in the case of AuCl 4 − . These different NP architectures and their connection to reaction stoichiometry are consistent with Stranski–Krastanov (SK) growth, providing general guidelines on how the conditions of GR processes can be used to achieve multimetallic nanostructures with different defined architectures. 
    more » « less