skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exponentially Convergent Multiscale Finite Element Method
We provide a concise review of the exponentially convergent multiscale finite element method (ExpMsFEM) for efficient model reduction of PDEs in heterogeneous media without scale separation and in high-frequency wave propagation. The ExpMsFEM is built on the non-overlapped domain decomposition in the classical MsFEM while enriching the approximation space systematically to achieve a nearly exponential convergence rate regarding the number of basis functions. Unlike most generalizations of the MsFEM in the literature, the ExpMsFEM does not rely on any partition of unity functions. In general, it is necessary to use function representations dependent on the right-hand side to break the algebraic Kolmogorov n-width barrier to achieve exponential convergence. Indeed, there are online and offline parts in the function representation provided by the ExpMsFEM. The online part depends on the right-hand side locally and can be computed in parallel efficiently. The offline part contains basis functions that are used in the Galerkin method to assemble the stiffness matrix; they are all independent of the right-hand side, so the stiffness matrix can be used repeatedly in multi-query scenarios.  more » « less
Award ID(s):
2205590
PAR ID:
10437516
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Communications on Applied Mathematics and Computation
ISSN:
2096-6385
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We consider the numerical approximation of the spectral fractional diffusion problem based on the so called Balakrishnan representation. The latter consists of an improper integral approximated via quadratures. At each quadrature point, a reaction-diffusion problem must be approximated and is the method bottle neck. In this work, we propose to reduce the computational cost using a reduced basis strategy allowing for a fast evaluation of the reaction-diffusion problems. The reduced basis does not depend on the fractional power s for 0 < s min ≤ s ≤ s max < 1. It is built offline once for all and used online irrespectively of the fractional power. We analyze the reduced basis strategy and show its exponential convergence. The analytical results are illustrated with insightful numerical experiments. 
    more » « less
  2. Abstract The reduction of a large‐scale symmetric linear discrete ill‐posed problem with multiple right‐hand sides to a smaller problem with a symmetric block tridiagonal matrix can easily be carried out by the application of a small number of steps of the symmetric block Lanczos method. We show that the subdiagonal blocks of the reduced problem converge to zero fairly rapidly with increasing block number. This quick convergence indicates that there is little advantage in expressing the solutions of discrete ill‐posed problems in terms of eigenvectors of the coefficient matrix when compared with using a basis of block Lanczos vectors, which are simpler and cheaper to compute. Similarly, for nonsymmetric linear discrete ill‐posed problems with multiple right‐hand sides, we show that the solution subspace defined by a few steps of the block Golub–Kahan bidiagonalization method usually can be applied instead of the solution subspace determined by the singular value decomposition of the coefficient matrix without significant, if any, reduction of the quality of the computed solution. 
    more » « less
  3. Taylor And Francis Online (Ed.)
    We present useful connections between the finite difference and the finite element methods for a model boundary value problem. We start from the observation that, in the finite element context, the interpolant of the solution in one dimension coincides with the finite element approximation of the solution. This result can be viewed as an extension of the Green function formula for the solution at the continuous level. We write the finite difference and the finite element systems such that the two corresponding linear systems have the same stiffness matrices and compare the right hand side load vectors for the two methods. Using evaluation of the Green function, a formula for the inverse of the stiffness matrix is extended to the case of non-uniformly distributed mesh points. We provide an error analysis based on the connection between the two methods and estimate the energy norm of the difference of the two solutions. Interesting extensions to the 2D case are provided. 
    more » « less
  4. We consider a model convection-diffusion problem and present useful connections between the finite differences and finite element discretization methods. We introduce a general upwinding Petrov-Galerkin discretization based on bubble modification of the test space and connect the method with the general upwinding approach used in finite difference discretization. We write the finite difference and the finite element systems such that the two corresponding linear systems have the same stiffness matrices, and compare the right hand side load vectors for the two methods. This new approach allows for improving well known upwinding finite difference methods and for obtaining new error estimates. We prove that the exponential bubble Petrov-Galerkin discretization can recover the interpolant of the exact solution. As a consequence, we estimate the closeness of the related finite difference solutions to the interpolant. The ideas we present in this work, can lead to building efficient new discretization methods for multidimensional convection dominated problems. 
    more » « less
  5. Melenk, J.M.; Perugia, I.; Schöberl, J.; Schwab, C (Ed.)
    The matrix valued exponential function can be used for time-stepping numerically stiff discretization, such as the discontinuous Galerkin method but this approach is expensive as the matrix is dense and necessitates global communication. In this paper, we propose a local low-rank approximation to this matrix. The local low-rank construction is motivated by the nature of wave propagation and costs significantly less to apply than full exponentiation. The accuracy of this time stepping method is inherited from the exponential integrator and the local property of it allows parallel implementation. The method is expected to be useful in design and inverse problems where many solves of the PDE are required. We demonstrate the error convergence of the method for the one-dimensional (1D) Maxwell’s equation on a uniform grid. 
    more » « less