skip to main content


Title: Taming the CFL Number for Discontinuous Galerkin Methods by Local Exponentiation
The matrix valued exponential function can be used for time-stepping numerically stiff discretization, such as the discontinuous Galerkin method but this approach is expensive as the matrix is dense and necessitates global communication. In this paper, we propose a local low-rank approximation to this matrix. The local low-rank construction is motivated by the nature of wave propagation and costs significantly less to apply than full exponentiation. The accuracy of this time stepping method is inherited from the exponential integrator and the local property of it allows parallel implementation. The method is expected to be useful in design and inverse problems where many solves of the PDE are required. We demonstrate the error convergence of the method for the one-dimensional (1D) Maxwell’s equation on a uniform grid.  more » « less
Award ID(s):
2208164 2210286 1913076
NSF-PAR ID:
10442642
Author(s) / Creator(s):
; ;
Editor(s):
Melenk, J.M.; Perugia, I.; Schöberl, J.; Schwab, C
Date Published:
Journal Name:
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Low-rank matrix models have been universally useful for numerous applications, from classical system identification to more modern matrix completion in signal processing and statistics. The nuclear norm has been employed as a convex surrogate of the low-rankness since it induces a low-rank solution to inverse problems. While the nuclear norm for low rankness has an excellent analogy with the $\ell _1$ norm for sparsity through the singular value decomposition, other matrix norms also induce low-rankness. Particularly as one interprets a matrix as a linear operator between Banach spaces, various tensor product norms generalize the role of the nuclear norm. We provide a tensor-norm-constrained estimator for the recovery of approximately low-rank matrices from local measurements corrupted with noise. A tensor-norm regularizer is designed to adapt to the local structure. We derive statistical analysis of the estimator over matrix completion and decentralized sketching by applying Maurey’s empirical method to tensor products of Banach spaces. The estimator provides a near-optimal error bound in a minimax sense and admits a polynomial-time algorithm for these applications.

     
    more » « less
  2. Summary

    In many applications, non-Gaussian data such as binary or count are observed over a continuous domain and there exists a smooth underlying structure for describing such data. We develop a new functional data method to deal with this kind of data when the data are regularly spaced on the continuous domain. Our method, referred to as Exponential Family Functional Principal Component Analysis (EFPCA), assumes the data are generated from an exponential family distribution, and the matrix of the canonical parameters has a low-rank structure. The proposed method flexibly accommodates not only the standard one-way functional data, but also two-way (or bivariate) functional data. In addition, we introduce a new cross validation method for estimating the latent rank of a generalized data matrix. We demonstrate the efficacy of the proposed methods using a comprehensive simulation study. The proposed method is also applied to a real application of the UK mortality study, where data are binomially distributed and two-way functional across age groups and calendar years. The results offer novel insights into the underlying mortality pattern.

     
    more » « less
  3. null (Ed.)
    Finding locally optimal solutions for MAX-CUT and MAX- k -CUT are well-known PLS-complete problems. An instinctive approach to finding such a locally optimum solution is the FLIP method. Even though FLIP requires exponential time in worst-case instances, it tends to terminate quickly in practical instances. To explain this discrepancy, the run-time of FLIP has been studied in the smoothed complexity framework. Etscheid and Röglin (ACM Transactions on Algorithms, 2017) showed that the smoothed complexity of FLIP for max-cut in arbitrary graphs is quasi-polynomial. Angel, Bubeck, Peres, and Wei (STOC, 2017) showed that the smoothed complexity of FLIP for max-cut in complete graphs is ( O Φ 5 n 15.1 ), where Φ is an upper bound on the random edge-weight density and Φ is the number of vertices in the input graph. While Angel, Bubeck, Peres, and Wei’s result showed the first polynomial smoothed complexity, they also conjectured that their run-time bound is far from optimal. In this work, we make substantial progress toward improving the run-time bound. We prove that the smoothed complexity of FLIP for max-cut in complete graphs is O (Φ n 7.83 ). Our results are based on a carefully chosen matrix whose rank captures the run-time of the method along with improved rank bounds for this matrix and an improved union bound based on this matrix. In addition, our techniques provide a general framework for analyzing FLIP in the smoothed framework. We illustrate this general framework by showing that the smoothed complexity of FLIP for MAX-3-CUT in complete graphs is polynomial and for MAX - k - CUT in arbitrary graphs is quasi-polynomial. We believe that our techniques should also be of interest toward showing smoothed polynomial complexity of FLIP for MAX - k - CUT in complete graphs for larger constants k . 
    more » « less
  4. We present an algorithmic framework for quantum-inspired classical algorithms on close-to-low-rank matrices, generalizing the series of results started by Tang’s breakthrough quantum-inspired algorithm for recommendation systems [STOC’19]. Motivated by quantum linear algebra algorithms and the quantum singular value transformation (SVT) framework of Gilyén et al. [STOC’19], we develop classical algorithms for SVT that run in time independent of input dimension, under suitable quantum-inspired sampling assumptions. Our results give compelling evidence that in the corresponding QRAM data structure input model, quantum SVT does not yield exponential quantum speedups. Since the quantum SVT framework generalizes essentially all known techniques for quantum linear algebra, our results, combined with sampling lemmas from previous work, suffice to generalize all prior results about dequantizing quantum machine learning algorithms. In particular, our classical SVT framework recovers and often improves the dequantization results on recommendation systems, principal component analysis, supervised clustering, support vector machines, low-rank regression, and semidefinite program solving. We also give additional dequantization results on low-rank Hamiltonian simulation and discriminant analysis. Our improvements come from identifying the key feature of the quantum-inspired input model that is at the core of all prior quantum-inspired results: ℓ2-norm sampling can approximate matrix products in time independent of their dimension. We reduce all our main results to this fact, making our exposition concise, self-contained, and intuitive.

     
    more » « less
  5. We consider the problem of recovering a rank-one matrix when a perturbed subset of its entries is revealed. We propose a method based on least squares in the log-space and show its performance matches the lower bounds that we derive for this problem in the small-perturbation regime, which are related to the spectral gap of a graph representing the revealed entries. Unfortunately, we show that for larger disturbances, potentially exponentially growing errors are unavoidable for any consistent recovery method. We then propose a second algorithm relying on encoding the matrix factorization in the stationary distribution of a certain Markov chain. We show that, under the stronger assumption of known upper and lower bounds on the entries of the true matrix, this second method does not have exponential error growth for large disturbances. Both algorithms can be implemented in nearly linear time. 
    more » « less