skip to main content

This content will become publicly available on August 30, 2024

Title: Improved Triplex‐Forming Isoorotamide PNA Nucleobases for A−U Recognition of RNA Duplexes**

Four new isoorotamide (Io)‐containing PNA nucleobases have been designed for A−U recognition of double helical RNA. New PNA monomers were prepared efficiently and incorporated into PNA nonamers for binding A−U in a PNA:RNA2triplex. Isothermal titration calorimetry and UV thermal melting experiments revealed slightly improved binding affinity for singly modified PNA compared to known A‐binding nucleobases. Molecular dynamics simulations provided further insights into binding ofIobases in the triple helix. Together, the data revealed interesting insights into binding modes including the notion that three Hoogsteen hydrogen bonds are unnecessary for strong selective binding of an extended nucleobase. Cationic monomerIo8additionally gave the highest affinity observed for an A‐binding nucleobase to date. These results will help inform future nucleobase design toward the goal of recognizing any sequence of double helical RNA.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Peptide nucleic acids (PNA) with extended isoorotamide containing nucleobases (Io) were designed for binding A–U base pairs in double‐stranded RNA. Isothermal titration calorimetry and UV thermal melting experiments revealed improved affinity for A–U using theIoscaffold in PNA. PNAs having four sequentialIoextended nucleobases maintained high binding affinity.

    more » « less
  2. Abstract

    Triple‐helical recognition of any sequence of double‐stranded RNA requires high affinity Hoogsteen hydrogen binding to pyrimidine interruptions of polypurine tracts. Because pyrimidines have only one hydrogen bond donor/acceptor on Hoogsteen face, their triple‐helical recognition is a formidable problem. The present study explored various five‐membered heterocycles and linkers that connect nucleobases to backbone of peptide nucleic acid (PNA) to optimize formation of X•C‐G and Y•U‐A triplets. Molecular modeling and biophysical (UV melting and isothermal titration calorimetry) results revealed a complex interplay between the heterocyclic nucleobase and linker to PNA backbone. While the five‐membered heterocycles did not improve pyrimidine recognition, increasing the linker length by four atoms provided promising gains in binding affinity and selectivity. The results suggest that further optimization of heterocyclic bases with extended linkers to PNA backbone may be a promising approach to triple‐helical recognition of RNA.

    more » « less
  3. Abstract

    Peptide nucleic acid (PNA) forms a triple helix with double‐stranded RNA (dsRNA) stabilized by a hydrogen‐bonding zipper formed by PNA's backbone amides (N−H) interacting with RNA phosphate oxygens. This hydrogen‐bonding pattern is enabled by the matching ∼5.7 Å spacing (typical for A‐form dsRNA) between PNA's backbone amides and RNA phosphate oxygens. We hypothesized that extending the PNA's backbone by one −CH2− group might bring the distance between PNA amide groups closer to 7 Å, which is favourable for hydrogen bonding to the B‐form dsDNA phosphate oxygens. Extension of the PNA backbone was expected to selectively stabilize PNA‐DNA triplexes compared to PNA‐RNA. To test this hypothesis, we synthesized triplex‐forming PNAs that had the pseudopeptide backbones extended by an additional −CH2− group in three different positions. Isothermal titration calorimetry measurements of the binding affinity of these extended PNA analogues for the matched dsDNA and dsRNA showed that, contrary to our structural reasoning, extending the PNA backbone at any position had a strong negative effect on triplex stability. Our results suggest that PNAs might have an inherent preference for A‐form‐like conformations when binding double‐stranded nucleic acids. It appears that the original six‐atom‐long PNA backbone is an almost perfect fit for binding to A‐form nucleic acids.

    more » « less
    more » « less

    Oligonucleic acids (ONAs), such as DNA and RNA, are used in various biotechnology and nanotechnology applications due to their ability to form a double helix that is stable at low temperature and melts at high temperatures. The melting temperature (Tm) of ONA duplexes can be tuned by the ONA composition, sequence, length and concentration, solvent quality, and salt concentration and by conjugation to other macromolecules. In this article, we use coarse‐grained (CG) molecular simulations to study ONAs conjugated with linear homopolymers that are relatively more solvophobic than the ONA. We study charged and stiff 8‐mer ONAs (e.g., DNA) and neutral and flexible 8‐mer ONAs (e.g., peptide nucleic acids or PNA), and vary the composition (or G‐C content) and sequence of ONA, conjugated homopolymer lengths and solvent quality for the polymer. For neutral and flexible ONAs, as the solvent quality worsens for the polymer, the ONA melting temperature increases from that of unconjugated ONA. The melting curves broaden with polymer length and worsening solvent quality, especially for ONAs with higher G‐C content. For charged and stiff ONAs, as the solvent quality worsens, the ONA melting temperature decreases compared to unconjugated ONA while the width of the melting curve remains the same. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 1196–1208

    more » « less