skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Human Crowds as Social Networks: Collective Dynamics of Consensus and Polarization
A ubiquitous type of collective behavior and decision-making is the coordinated motion of bird flocks, fish schools, and human crowds. Collective decisions to move in the same direction, turn right or left, or split into subgroups arise in a self-organized fashion from local interactions between individuals without central plans or designated leaders. Strikingly similar phenomena of consensus (collective motion), clustering (subgroup formation), and bipolarization (splitting into extreme groups) are also observed in opinion formation. As we developed models of crowd dynamics and analyzed crowd networks, we found ourselves going down the same path as models of opinion dynamics in social networks. In this article, we draw out the parallels between human crowds and social networks. We show that models of crowd dynamics and opinion dynamics have a similar mathematical form and generate analogous phenomena in multiagent simulations. We suggest that they can be unified by a common collective dynamics, which may be extended to other psychological collectives. Models of collective dynamics thus offer a means to account for collective behavior and collective decisions without appealing to a priori mental structures.  more » « less
Award ID(s):
1849446
PAR ID:
10437567
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Perspectives on Psychological Science
Volume:
19
Issue:
2
ISSN:
1745-6916
Format(s):
Medium: X Size: p. 522-537
Size(s):
p. 522-537
Sponsoring Org:
National Science Foundation
More Like this
  1. Collective motion in human crowds has been understood as a self-organizing phenomenon that is generated from local visual interactions between neighboring pedestrians. To analyze these interactions, we introduce an approach that estimates local influences in observational data on moving human crowds and represents them as spatially-embedded dynamic networks (visual influence networks). We analyzed data from a human “swarm” experiment (N= 10, 16, 20) in which participants were instructed to walk about the tracking area while staying together as a group. We reconstructed the network every 0.5 seconds using Time-Dependent Delayed Correlation (TDDC). Using novel network measures of local and global leadership ('direct influence' and 'branching influence'), we find that both measures strongly depend on an individual’s spatial position within the group, yielding similar but distinctive leadership gradients from the front to the back. There was also a strong linear relationship between individual influence and front-back position in the crowd. The results reveal that influence is concentrated in specific positions in a crowd, a fact that could be exploited by individuals seeking to lead collective crowd motion. 
    more » « less
  2. Agent-based models of “flocking” and “schooling” have shown that a weighted average of neighbor velocities, with weights that decay gradually with distance, yields emergent collective motion. Weighted averaging thus offers a potential mechanism of self-organization that recruits an increasing, but self-limiting, number of individuals into collective motion. Previously, we identified and modeled such a ‘soft metric’ neighborhood of interaction in human crowds that decays exponentially to zero at a distance of 4–5 m. Here we investigate the limits of weighted averaging in humans and find that it is surprisingly robust: pedestrians align with the mean heading direction in their neighborhood, despite high levels of noise and diverging motions in the crowd, as predicted by the model. In three Virtual Reality experiments, participants were immersed in a crowd of virtual humans in a mobile head-mounted display and were instructed to walk with the crowd. By perturbing the heading (walking direction) of virtual neighbors and measuring the participant’s trajectory, we probed the limits of weighted averaging. 1) In the “Noisy Neighbors” experiment, the neighbor headings were randomized (range 0–90°) about the crowd’s mean direction (±10° or ±20°, left or right); 2) in the “Splitting Crowd” experiment, the crowd split into two groups (heading difference = 10–40°) and the proportion of the crowd in one group was varied (50–84%); 3) in the “Coherent Subgroup” experiment, a perturbed subgroup varied in its coherence (heading SD = 0–20°) about a mean direction (±10° or ±20°) within a noisy crowd (heading range = 180°), and the proportion of the crowd in the subgroup was varied. In each scenario, the results were predicted by the weighted averaging model, and attraction strength (turning rate) increased with the participant’s deviation from the mean heading direction, not with group coherence. However, the results indicate that humans ignore highly discrepant headings (45–90°). These findings reveal that weighted averaging in humans is highly robust and generates a common heading direction that acts as a positive feedback to recruit more individuals into collective motion, in a self-reinforcing cascade. Therefore, this “soft” metric neighborhood serves as a mechanism of self-organization in human crowds. 
    more » « less
  3. null (Ed.)
    It is commonly believed that global patterns of motion in flocks, schools and crowds emerge from local interactions between individuals, through a process of self-organization. The key to explaining such collective behaviour thus lies in deciphering these local interactions. We take an experiment-driven approach to modelling collective motion in human crowds. Previously, we observed that a pedestrian aligns their velocity vector (speed and heading direction) with that of a neighbour. Here we investigate the neighbourhood of interaction in a crowd: which neighbours influence a pedestrian's behaviour, how this depends on neighbour position, and how the influences of multiple neighbours are combined. In three experiments, a participant walked in a virtual crowd whose speed and heading were manipulated. We find that neighbour influence is linearly combined and decreases with distance, but not with lateral position (eccentricity). We model the neighbourhood as (i) a circularly symmetric region with (ii) a weighted average of neighbours, (iii) a uni-directional influence, and (iv) weights that decay exponentially to zero by 5 m. The model reproduces the experimental data and predicts individual trajectories in observational data on a human ‘swarm’. The results yield the first bottom-up model of collective crowd motion. 
    more » « less
  4. Romero, V; Segundo-Ortin, M; Wagman, J; Nonaka, T (Ed.)
    Where does the organization in behavior come from? Ecological psychology seeks to explain adaptive behavior as self-organized, emerging from the dynamics of agent-environment interactions, without assuming such organization a priori. This chapter offers an accessible introduction to the behavioral dynamics approach to modeling perception and action, applied to the case of human locomotion and crowd behavior. Most models of such behavior are ‘omniscient’, presuming accurate knowledge of the environmental state, but we find that information-based ‘visual’ models more closely capture human data. At the individual level, a locomotor trajectory emerges from an agent’s interactions with goals and obstacles, as attractors and repellers appear, shift, and bifurcate. At the dyad level, pedestrian interactions governed by visual control laws yield coordinated movements such as interception, collision avoidance, and following. At the collective level, these local interactions generate human ‘flocking’, crowd bifurcations, and patterns of lanes and stripes in crossing flows of pedestrians. By adopting an empirical, bottom-up, information-based approach, behavioral dynamics helps explain individual and collective behavior as resulting from a process of self-organized pattern formation, without appealing to internal plans or external commands. 
    more » « less
  5. Nicolas, A; Bain, N; Douin, A; Ramos, O; Furno, A (Ed.)
    Previous research has suggested that some positions in human crowds are more influential than others. The present study aims to manipulate the influence networks in real human crowds by specifying the causal relationship among some pedestrians. We strategically placed covert or explicit leaders (confederates) in a group of walking pedestrians, instructed them to change walking direction (heading) on a signal, and tested their influence on collective motion. We reconstructed visual influence networks from video data and analyzed the effect of these leaders on the movements of other pedestrians. Our results suggest that both covert and explicit leaders in influential positions can steer and split a crowd, but explicit leaders change the network topology and are significantly more influential than their covert counterparts. The results have potential applications to directing emergency evacuations. 
    more » « less