skip to main content


Title: Is the neighborhood of interaction in human crowds metric, topological, or visual?
Abstract

Global patterns of collective motion in bird flocks, fish schools, and human crowds are thought to emerge from local interactions within a neighborhood of interaction, the zone in which an individual is influenced by their neighbors. Both metric and topological neighborhoods have been reported in animal groups, but this question has not been addressed for human crowds. The answer has important implications for modeling crowd behavior and predicting crowd disasters such as jams, crushes, and stampedes. In a metric neighborhood, an individual is influenced by all neighbors within a fixed radius, whereas in a topological neighborhood, an individual is influenced by a fixed number of nearest neighbors, regardless of their physical distance. A recently proposed alternative is a visual neighborhood, in which an individual is influenced by the optical motions of all visible neighbors. We test these hypotheses experimentally by asking participants to walk in real and virtual crowds and manipulating the crowd's density. Our results rule out a topological neighborhood, are approximated by a metric neighborhood, but are best explained by a visual neighborhood that has elements of both. We conclude that the neighborhood of interaction in human crowds follows naturally from the laws of optics and suggest that previously observed “topological” and “metric” interactions might be a consequence of the visual neighborhood.

 
more » « less
Award ID(s):
1849446
NSF-PAR ID:
10514651
Author(s) / Creator(s):
; ; ;
Editor(s):
Borge-Holthoefer, Javier
Publisher / Repository:
National Academy of Sciences, Oxford University Press
Date Published:
Journal Name:
PNAS Nexus
Volume:
2
Issue:
5
ISSN:
2752-6542
Page Range / eLocation ID:
pgrad118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Agent-based models of “flocking” and “schooling” have shown that a weighted average of neighbor velocities, with weights that decay gradually with distance, yields emergent collective motion. Weighted averaging thus offers a potential mechanism of self-organization that recruits an increasing, but self-limiting, number of individuals into collective motion. Previously, we identified and modeled such a ‘soft metric’ neighborhood of interaction in human crowds that decays exponentially to zero at a distance of 4–5 m. Here we investigate the limits of weighted averaging in humans and find that it is surprisingly robust: pedestrians align with the mean heading direction in their neighborhood, despite high levels of noise and diverging motions in the crowd, as predicted by the model. In three Virtual Reality experiments, participants were immersed in a crowd of virtual humans in a mobile head-mounted display and were instructed to walk with the crowd. By perturbing the heading (walking direction) of virtual neighbors and measuring the participant’s trajectory, we probed the limits of weighted averaging. 1) In the “Noisy Neighbors” experiment, the neighbor headings were randomized (range 0–90°) about the crowd’s mean direction (±10° or ±20°, left or right); 2) in the “Splitting Crowd” experiment, the crowd split into two groups (heading difference = 10–40°) and the proportion of the crowd in one group was varied (50–84%); 3) in the “Coherent Subgroup” experiment, a perturbed subgroup varied in its coherence (heading SD = 0–20°) about a mean direction (±10° or ±20°) within a noisy crowd (heading range = 180°), and the proportion of the crowd in the subgroup was varied. In each scenario, the results were predicted by the weighted averaging model, and attraction strength (turning rate) increased with the participant’s deviation from the mean heading direction, not with group coherence. However, the results indicate that humans ignore highly discrepant headings (45–90°). These findings reveal that weighted averaging in humans is highly robust and generates a common heading direction that acts as a positive feedback to recruit more individuals into collective motion, in a self-reinforcing cascade. Therefore, this “soft” metric neighborhood serves as a mechanism of self-organization in human crowds. 
    more » « less
  2. null (Ed.)
    Collective motion in human crowds emerges from local interactions between individual pedestrians. Previously, we found that an individual in a crowd aligns their velocity vector with a weighted average of their neighbors’ velocities, where the weight decays with distance (Rio, Dachner, & Warren, PRSB, 2018; Warren, CDPS, 2018). Here, we explain this “alignment rule” based solely on visual information. When following behind a neighbor, the follower controls speed by canceling the neighbor’s optical expansion (Bai & Warren, VSS, 2018) and heading by canceling the neighbor’s angular velocity. When walking beside a neighbor, these relations reverse: Speed is controlled by canceling angular velocity and heading by canceling optical expansion. These two variables trade off as sinusoidal functions of eccentricity (Dachner & Warren, VSS, 2018). We use this visual model to simulate the trajectories of participants walking in virtual (12 neighbors) and real (20 neighbors) crowds. The model accounts for the data with root mean square errors (.04–.05 m/s, 1.5°–2.0°) the distance decay as a consequence of comparable to those of our previous velocity-alignment model. Moreover, the model explains Euclid’s law of perspective, without an explicit distance term. The visual model thus provides a better explanation of collective motion. 
    more » « less
  3. null (Ed.)
    It is commonly believed that global patterns of motion in flocks, schools and crowds emerge from local interactions between individuals, through a process of self-organization. The key to explaining such collective behaviour thus lies in deciphering these local interactions. We take an experiment-driven approach to modelling collective motion in human crowds. Previously, we observed that a pedestrian aligns their velocity vector (speed and heading direction) with that of a neighbour. Here we investigate the neighbourhood of interaction in a crowd: which neighbours influence a pedestrian's behaviour, how this depends on neighbour position, and how the influences of multiple neighbours are combined. In three experiments, a participant walked in a virtual crowd whose speed and heading were manipulated. We find that neighbour influence is linearly combined and decreases with distance, but not with lateral position (eccentricity). We model the neighbourhood as (i) a circularly symmetric region with (ii) a weighted average of neighbours, (iii) a uni-directional influence, and (iv) weights that decay exponentially to zero by 5 m. The model reproduces the experimental data and predicts individual trajectories in observational data on a human ‘swarm’. The results yield the first bottom-up model of collective crowd motion. 
    more » « less
  4. Patterns of collective motion in bird flocks, fish schools and human crowds are believed to emerge from local interactions between individuals. Most ‘flocking' models attribute these local interactions to hypothetical rules or metaphorical forces and assume an omniscient third-person view of the positions and velocities of all individuals in space. We develop a visual model of collective motion in human crowds based on the visual coupling that governs pedestrian interactions from a first-person embedded viewpoint. Specifically, humans control their walking speed and direction by cancelling the average angular velocity and optical expansion/contraction of their neighbours, weighted by visibility (1 − occlusion). We test the model by simulating data from experiments with virtual crowds and real human ‘swarms'. The visual model outperforms our previous omniscient model and explains basic properties of interaction: ‘repulsion' forces reduce to cancelling optical expansion, ‘attraction' forces to cancelling optical contraction and ‘alignment' to cancelling the combination of expansion/contraction and angular velocity. Moreover, the neighbourhood of interaction follows from Euclid's Law of perspective and the geometry of occlusion. We conclude that the local interactions underlying human flocking are a natural consequence of the laws of optics. Similar perceptual principles may apply to collective motion in other species. 
    more » « less
  5. Abstract

    Associational effects, whereby plants influence the biotic interactions of their neighbors, are an important component of plant–insect interactions. Plant chemistry has been hypothesized to mediate these interactions. The role of chemistry in associational effects, however, has been unclear in part because the diversity of plant chemistry makes it difficult to tease apart the importance and roles of particular classes of compounds. We examined the chemical ecology of associational effects using backcross‐bred plants of theSolanum pennelliiintrogression lines. We used eight genotypes from the introgression line system to establish 14 unique neighborhood treatments that maximized differences in acyl sugars, proteinase inhibitor, and terpene chemical diversity. We found that the chemical traits of the neighboring plant, rather than simply the number of introgression lines within a neighborhood, influenced insect abundance on focal plants. Furthermore, within‐chemical class diversity had contrasting effects on herbivore and predator abundances, and depended on the frequency of neighboring plant chemotypes. Notably, we found insect mobility—flying versus crawling—played a key role in insect response to phytochemistry. We highlight that the frequency and chemical phenotype of plant neighbors underlie associational effects and suggest this may be an important mechanism in maintaining intraspecific phytochemical variation within plant populations.

     
    more » « less