skip to main content


Title: ScatterShot: Interactive In-context Example Curation for Text Transformation
The in-context learning capabilities of LLMs like GPT-3 allow annotators to customize an LLM to their specific tasks with a small number of examples. However, users tend to include only the most obvious patterns when crafting examples, resulting in underspecified in-context functions that fall short on unseen cases. Further, it is hard to know when “enough” examples have been included even for known patterns. In this work, we present ScatterShot, an interactive system for building high-quality demonstration sets for in-context learning. ScatterShot iteratively slices unlabeled data into task-specific patterns, samples informative inputs from underexplored or not-yet-saturated slices in an active learning manner, and helps users label more efficiently with the help of an LLM and the current example set. In simulation studies on two text perturbation scenarios, ScatterShot sampling improves the resulting few-shot functions by 4-5 percentage points over random sampling, with less variance as more examples are added. In a user study, ScatterShot greatly helps users in covering different patterns in the input space and labeling in-context examples more efficiently, resulting in better in-context learning and less user effort.  more » « less
Award ID(s):
1901386
NSF-PAR ID:
10437580
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IUI '23: Proceedings of the 28th International Conference on Intelligent User Interfaces
Page Range / eLocation ID:
353 to 367
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The DeepLearningEpilepsyDetectionChallenge: design, implementation, andtestofanewcrowd-sourced AIchallengeecosystem Isabell Kiral*, Subhrajit Roy*, Todd Mummert*, Alan Braz*, Jason Tsay, Jianbin Tang, Umar Asif, Thomas Schaffter, Eren Mehmet, The IBM Epilepsy Consortium◊ , Joseph Picone, Iyad Obeid, Bruno De Assis Marques, Stefan Maetschke, Rania Khalaf†, Michal Rosen-Zvi† , Gustavo Stolovitzky† , Mahtab Mirmomeni† , Stefan Harrer† * These authors contributed equally to this work † Corresponding authors: rkhalaf@us.ibm.com, rosen@il.ibm.com, gustavo@us.ibm.com, mahtabm@au1.ibm.com, sharrer@au.ibm.com ◊ Members of the IBM Epilepsy Consortium are listed in the Acknowledgements section J. Picone and I. Obeid are with Temple University, USA. T. Schaffter is with Sage Bionetworks, USA. E. Mehmet is with the University of Illinois at Urbana-Champaign, USA. All other authors are with IBM Research in USA, Israel and Australia. Introduction This decade has seen an ever-growing number of scientific fields benefitting from the advances in machine learning technology and tooling. More recently, this trend reached the medical domain, with applications reaching from cancer diagnosis [1] to the development of brain-machine-interfaces [2]. While Kaggle has pioneered the crowd-sourcing of machine learning challenges to incentivise data scientists from around the world to advance algorithm and model design, the increasing complexity of problem statements demands of participants to be expert data scientists, deeply knowledgeable in at least one other scientific domain, and competent software engineers with access to large compute resources. People who match this description are few and far between, unfortunately leading to a shrinking pool of possible participants and a loss of experts dedicating their time to solving important problems. Participation is even further restricted in the context of any challenge run on confidential use cases or with sensitive data. Recently, we designed and ran a deep learning challenge to crowd-source the development of an automated labelling system for brain recordings, aiming to advance epilepsy research. A focus of this challenge, run internally in IBM, was the development of a platform that lowers the barrier of entry and therefore mitigates the risk of excluding interested parties from participating. The challenge: enabling wide participation With the goal to run a challenge that mobilises the largest possible pool of participants from IBM (global), we designed a use case around previous work in epileptic seizure prediction [3]. In this “Deep Learning Epilepsy Detection Challenge”, participants were asked to develop an automatic labelling system to reduce the time a clinician would need to diagnose patients with epilepsy. Labelled training and blind validation data for the challenge were generously provided by Temple University Hospital (TUH) [4]. TUH also devised a novel scoring metric for the detection of seizures that was used as basis for algorithm evaluation [5]. In order to provide an experience with a low barrier of entry, we designed a generalisable challenge platform under the following principles: 1. No participant should need to have in-depth knowledge of the specific domain. (i.e. no participant should need to be a neuroscientist or epileptologist.) 2. No participant should need to be an expert data scientist. 3. No participant should need more than basic programming knowledge. (i.e. no participant should need to learn how to process fringe data formats and stream data efficiently.) 4. No participant should need to provide their own computing resources. In addition to the above, our platform should further • guide participants through the entire process from sign-up to model submission, • facilitate collaboration, and • provide instant feedback to the participants through data visualisation and intermediate online leaderboards. The platform The architecture of the platform that was designed and developed is shown in Figure 1. The entire system consists of a number of interacting components. (1) A web portal serves as the entry point to challenge participation, providing challenge information, such as timelines and challenge rules, and scientific background. The portal also facilitated the formation of teams and provided participants with an intermediate leaderboard of submitted results and a final leaderboard at the end of the challenge. (2) IBM Watson Studio [6] is the umbrella term for a number of services offered by IBM. Upon creation of a user account through the web portal, an IBM Watson Studio account was automatically created for each participant that allowed users access to IBM's Data Science Experience (DSX), the analytics engine Watson Machine Learning (WML), and IBM's Cloud Object Storage (COS) [7], all of which will be described in more detail in further sections. (3) The user interface and starter kit were hosted on IBM's Data Science Experience platform (DSX) and formed the main component for designing and testing models during the challenge. DSX allows for real-time collaboration on shared notebooks between team members. A starter kit in the form of a Python notebook, supporting the popular deep learning libraries TensorFLow [8] and PyTorch [9], was provided to all teams to guide them through the challenge process. Upon instantiation, the starter kit loaded necessary python libraries and custom functions for the invisible integration with COS and WML. In dedicated spots in the notebook, participants could write custom pre-processing code, machine learning models, and post-processing algorithms. The starter kit provided instant feedback about participants' custom routines through data visualisations. Using the notebook only, teams were able to run the code on WML, making use of a compute cluster of IBM's resources. The starter kit also enabled submission of the final code to a data storage to which only the challenge team had access. (4) Watson Machine Learning provided access to shared compute resources (GPUs). Code was bundled up automatically in the starter kit and deployed to and run on WML. WML in turn had access to shared storage from which it requested recorded data and to which it stored the participant's code and trained models. (5) IBM's Cloud Object Storage held the data for this challenge. Using the starter kit, participants could investigate their results as well as data samples in order to better design custom algorithms. (6) Utility Functions were loaded into the starter kit at instantiation. This set of functions included code to pre-process data into a more common format, to optimise streaming through the use of the NutsFlow and NutsML libraries [10], and to provide seamless access to the all IBM services used. Not captured in the diagram is the final code evaluation, which was conducted in an automated way as soon as code was submitted though the starter kit, minimising the burden on the challenge organising team. Figure 1: High-level architecture of the challenge platform Measuring success The competitive phase of the "Deep Learning Epilepsy Detection Challenge" ran for 6 months. Twenty-five teams, with a total number of 87 scientists and software engineers from 14 global locations participated. All participants made use of the starter kit we provided and ran algorithms on IBM's infrastructure WML. Seven teams persisted until the end of the challenge and submitted final solutions. The best performing solutions reached seizure detection performances which allow to reduce hundred-fold the time eliptologists need to annotate continuous EEG recordings. Thus, we expect the developed algorithms to aid in the diagnosis of epilepsy by significantly shortening manual labelling time. Detailed results are currently in preparation for publication. Equally important to solving the scientific challenge, however, was to understand whether we managed to encourage participation from non-expert data scientists. Figure 2: Primary occupation as reported by challenge participants Out of the 40 participants for whom we have occupational information, 23 reported Data Science or AI as their main job description, 11 reported being a Software Engineer, and 2 people had expertise in Neuroscience. Figure 2 shows that participants had a variety of specialisations, including some that are in no way related to data science, software engineering, or neuroscience. No participant had deep knowledge and experience in data science, software engineering and neuroscience. Conclusion Given the growing complexity of data science problems and increasing dataset sizes, in order to solve these problems, it is imperative to enable collaboration between people with differences in expertise with a focus on inclusiveness and having a low barrier of entry. We designed, implemented, and tested a challenge platform to address exactly this. Using our platform, we ran a deep-learning challenge for epileptic seizure detection. 87 IBM employees from several business units including but not limited to IBM Research with a variety of skills, including sales and design, participated in this highly technical challenge. 
    more » « less
  2. Block-based programming environments, such as Scratch and Snap!, engage users to create programming artifacts such as games and stories, and share them in an online community. Many Snap! users start programming by reusing and modifying an example project, but encounter many barriers when searching and identifying the relevant parts of the program to learn and reuse. We present Pinpoint, a system that helps Snap! programmers understand and reuse an existing program by isolating the code responsible for specific events during program execution. Specifically, a user can record an execution of the program (including user inputs and graphical output), replay the output, and select a specific time interval where the event of interest occurred, to view code that is relevant to this event. We conducted a small-scale user study to compare users’ program comprehension experience with and without Pinpoint, and found suggestive evidence that Pinpoint helps users understand and reuse a complex program more efficiently. 
    more » « less
  3. Enterprise software updates depend on the interaction between user and developer organizations. This interaction becomes especially complex when a single developer organization writes software that services hundreds of different user organizations. Miscommunication during patching and deployment efforts lead to insecure or malfunctioning software installations. While developers oversee the code, the update process starts and ends outside their control. Since developer test suites may fail to capture buggy behavior finding and fixing these bugs starts with user generated bug reports and 3rd party disclosures. The process ends when the fixed code is deployed in production. Any friction between user, and developer results in a delay patching critical bugs. Two common causes for friction are a failure to replicate user specific circumstances that cause buggy behavior and incompatible software releases that break critical functionality. Existing test generation techniques are insufficient. They fail to test candidate patches for post-deployment bugs and to test whether the new release adversely effects customer workloads. With existing test generation and deployment techniques, users can't choose (nor validate) compatible portions of new versions and retain their previous version's functionality. We present two new technologies to alleviate this friction. First, Test Generation for Ad Hoc Circumstances transforms buggy executions into test cases. Second, Binary Patch Decomposition allows users to select the compatible pieces of update releases. By sharing specific context around buggy behavior and developers can create specific test cases that demonstrate if their fixes are appropriate. When fixes are distributed by including extra context users can incorporate only updates that guarantee compatibility between buggy and fixed versions. We use change analysis in combination with binary rewriting to transform the old executable and buggy execution into a test case including the developer's prospective changes that let us generate and run targeted tests for the candidate patch. We also provide analogous support to users, to selectively validate and patch their production environments with only the desired bug-fixes from new version releases. This paper presents a new patching workflow that allows developers to validate prospective patches and users to select which updates they would like to apply, along with two new technologies that make it possible. We demonstrate our technique constructs tests cases more effectively and more efficiently than traditional test case generation on a collection of real world bugs compared to traditional test generation techniques, and provides the ability for flexible updates in real world scenarios. 
    more » « less
  4. The COVID-19 pandemic has dramatically altered family life in the United States. Over the long duration of the pandemic, parents had to adapt to shifting work conditions, virtual schooling, the closure of daycare facilities, and the stress of not only managing households without domestic and care supports but also worrying that family members may contract the novel coronavirus. Reports early in the pandemic suggest that these burdens have fallen disproportionately on mothers, creating concerns about the long-term implications of the pandemic for gender inequality and mothers’ well-being. Nevertheless, less is known about how parents’ engagement in domestic labor and paid work has changed throughout the pandemic, what factors may be driving these changes, and what the long-term consequences of the pandemic may be for the gendered division of labor and gender inequality more generally.

    The Study on U.S. Parents’ Divisions of Labor During COVID-19 (SPDLC) collects longitudinal survey data from partnered U.S. parents that can be used to assess changes in parents’ divisions of domestic labor, divisions of paid labor, and well-being throughout and after the COVID-19 pandemic. The goal of SPDLC is to understand both the short- and long-term impacts of the pandemic for the gendered division of labor, work-family issues, and broader patterns of gender inequality.

    Survey data for this study is collected using Prolifc (www.prolific.co), an opt-in online platform designed to facilitate scientific research. The sample is comprised U.S. adults who were residing with a romantic partner and at least one biological child (at the time of entry into the study). In each survey, parents answer questions about both themselves and their partners. Wave 1 of SPDLC was conducted in April 2020, and parents who participated in Wave 1 were asked about their division of labor both prior to (i.e., early March 2020) and one month after the pandemic began. Wave 2 of SPDLC was collected in November 2020. Parents who participated in Wave 1 were invited to participate again in Wave 2, and a new cohort of parents was also recruited to participate in the Wave 2 survey. Wave 3 of SPDLC was collected in October 2021. Parents who participated in either of the first two waves were invited to participate again in Wave 3, and another new cohort of parents was also recruited to participate in the Wave 3 survey. This research design (follow-up survey of panelists and new cross-section of parents at each wave) will continue through 2024, culminating in six waves of data spanning the period from March 2020 through October 2024. An estimated total of approximately 6,500 parents will be surveyed at least once throughout the duration of the study.

    SPDLC data will be released to the public two years after data is collected; Waves 1 and 2 are currently publicly available. Wave 3 will be publicly available in October 2023, with subsequent waves becoming available yearly. Data will be available to download in both SPSS (.sav) and Stata (.dta) formats, and the following data files will be available: (1) a data file for each individual wave, which contains responses from all participants in that wave of data collection, (2) a longitudinal panel data file, which contains longitudinal follow-up data from all available waves, and (3) a repeated cross-section data file, which contains the repeated cross-section data (from new respondents at each wave) from all available waves. Codebooks for each survey wave and a detailed user guide describing the data are also available. Response Rates: Of the 1,157 parents who participated in Wave 1, 828 (72%) also participated in the Wave 2 study. Presence of Common Scales: The following established scales are included in the survey:
    • Self-Efficacy, adapted from Pearlin's mastery scale (Pearlin et al., 1981) and the Rosenberg self-esteem scale (Rosenberg, 2015) and taken from the American Changing Lives Survey
    • Communication with Partner, taken from the Marriage and Relationship Survey (Lichter & Carmalt, 2009)
    • Gender Attitudes, taken from the National Survey of Families and Households (Sweet & Bumpass, 1996)
    • Depressive Symptoms (CES-D-10)
    • Stress, measured using Cohen's Perceived Stress Scale (Cohen, Kamarck, & Mermelstein, 1983)
    Full details about these scales and all other items included in the survey can be found in the user guide and codebook
    The second wave of the SPDLC was fielded in November 2020 in two stages. In the first stage, all parents who participated in W1 of the SPDLC and who continued to reside in the United States were re-contacted and asked to participate in a follow-up survey. The W2 survey was posted on Prolific, and messages were sent via Prolific’s messaging system to all previous participants. Multiple follow-up messages were sent in an attempt to increase response rates to the follow-up survey. Of the 1,157 respondents who completed the W1 survey, 873 at least started the W2 survey. Data quality checks were employed in line with best practices for online surveys (e.g., removing respondents who did not complete most of the survey or who did not pass the attention filters). After data quality checks, 5.2% of respondents were removed from the sample, resulting in a final sample size of 828 parents (a response rate of 72%).

    In the second stage, a new sample of parents was recruited. New parents had to meet the same sampling criteria as in W1 (be at least 18 years old, reside in the United States, reside with a romantic partner, and be a parent living with at least one biological child). Also similar to the W1 procedures, we oversampled men, Black individuals, individuals who did not complete college, and individuals who identified as politically conservative to increase sample diversity. A total of 1,207 parents participated in the W2 survey. Data quality checks led to the removal of 5.7% of the respondents, resulting in a final sample size of new respondents at Wave 2 of 1,138 parents.

    In both stages, participants were informed that the survey would take approximately 20 minutes to complete. All panelists were provided monetary compensation in line with Prolific’s compensation guidelines, which require that all participants earn above minimum wage for their time participating in studies.
    To be included in SPDLC, respondents had to meet the following sampling criteria at the time they enter the study: (a) be at least 18 years old, (b) reside in the United States, (c) reside with a romantic partner (i.e., be married or cohabiting), and (d) be a parent living with at least one biological child. Follow-up respondents must be at least 18 years old and reside in the United States, but may experience changes in relationship and resident parent statuses. Smallest Geographic Unit: U.S. State

    This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. In accordance with this license, all users of these data must give appropriate credit to the authors in any papers, presentations, books, or other works that use the data. A suggested citation to provide attribution for these data is included below:            

    Carlson, Daniel L. and Richard J. Petts. 2022. Study on U.S. Parents’ Divisions of Labor During COVID-19 User Guide: Waves 1-2.  

    To help provide estimates that are more representative of U.S. partnered parents, the SPDLC includes sampling weights. Weights can be included in statistical analyses to make estimates from the SPDLC sample representative of U.S. parents who reside with a romantic partner (married or cohabiting) and a child aged 18 or younger based on age, race/ethnicity, and gender. National estimates for the age, racial/ethnic, and gender profile of U.S. partnered parents were obtained using data from the 2020 Current Population Survey (CPS). Weights were calculated using an iterative raking method, such that the full sample in each data file matches the nationally representative CPS data in regard to the gender, age, and racial/ethnic distributions within the data. This variable is labeled CPSweightW2 in the Wave 2 dataset, and CPSweightLW2 in the longitudinal dataset (which includes Waves 1 and 2). There is not a weight variable included in the W1-W2 repeated cross-section data file.
     
    more » « less
  5. Current wireless networks employ sophisticated multi-user transmission techniques to fully utilize the physical layer resources for data transmission. At the MAC layer, these techniques rely on a semi-static map that translates the channel quality of users to the potential transmission rate (more precisely, a map from the Channel Quality Index to the Modulation and Coding Scheme) for user selection and scheduling decisions. However, such a static map does not adapt to the actual deployment scenario and can lead to large performance losses. Furthermore, adaptively learning this map can be inefficient, particularly when there are a large number of users. In this work, we make this learning efficient by clustering users. Specifically, we develop an online learning approach that jointly clusters users and channel-states, and learns the associated rate regions of each cluster. This approach generates a scenario-specific map that replaces the static map that is currently used in practice. Furthermore, we show that our learning algorithm achieves sub- linear regret when compared to an omniscient genie. Next, we develop a user selection algorithm for multi-user scheduling using the learned user-clusters and associated rate regions. Our algorithms are validated on the WiNGS simulator from AT&T Labs, that implements the PHY/MAC stack and simulates the channel. We show that our algorithm can efficiently learn user clusters and the rate regions associated with the user sets for any observed channel state. Moreover, our simulations show that a deployment-scenario-specific map significantly outperforms the current static map approach for resource allocation at the MAC layer. 
    more » « less