skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Incorporation of a smart sock with the virtual immersive test for postural stability
Purpose of Study Assessment of an individual's postural stability serves as an indirect measure for both physiological and biomechanical stresses placed on an individual. More recently, some individuals after COVID-19 (SARS-CoV-2) infection have been identified with neurological complaints (Post-Acute Sequelae of Covid - PASC). These individuals can also be predisposed to decreased postural stability and an increased risk for falls. The purpose of the project was to incorporate two different wearable technology (virtual reality (VR) based virtual immersive sensorimotor test - VIST and pressure senor-based smart sock) to assess postural stability among healthy and individuals with PASC to quantify the overall status of the postural control system. Methods Used All methods were conducted based on the University's Institutional Review Board (IRB# 21-296) with informed consent. A total of 12 males and females (six healthy and six with self-reported complaints of PASC) have completed the study so far. All participants were tested using the VIST, while standing on a force platform and wearing the smart sock simultaneously. The (VIST uses a VR headset and proprietary software to test an individual's integrated sensory, motor, and cognitive processes through eight unique tests (smooth pursuits, saccades, convergence, peripheral vision, object discrimination, gaze stability, head-eye coordination, cervical neuromotor control). Center of pressure (COP) data from force platform and pressure sensor data from the smart socks were used to calculate anterior-posterior and medial-lateral postural sway variables. These postural sway variables were analyzed using an independent samples t-test between the healthy and PASC groups at an alpha set at 0.05. Summary of  more » « less
Award ID(s):
1827652
PAR ID:
10437677
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The American Journal of the Medical Sciences 2023 Southern Regional Meeting
Volume:
365
Issue:
Supplement 1
Page Range / eLocation ID:
S89-S90
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Previous research has shown that individuals behave differently in certain virtual reality tasks. The effect of VR on human posture and stability is an important factor that can influence the future applications of VR devices. This current study seeks to investigate how a person’s postural stability differs between VR and normal environment while attempting to replicate the influence of target distance on sway. Ten healthy subjects were tested in both environments with targets varying in distance. The results found a significant difference in postural stability for normal anatomical stance tasks between VR and normal environments. 
    more » « less
  2. Epidemiological studies link increased fall risk to obesity in older adults, but the mechanism through which obesity increases falls and fall risks is unknown. This study investigates if obesity (Body Mass Index: BMI>30 kg/m2) influenced gait and standing postural characteristics of community dwelling older adults leading to increased risk of falls. One hundred healthy older adults (age 74.0±7.6 years, range of 56-90 years) living independently in a community participated in this study. Participants' history of falls over the previous two years was recorded, with emphasis on frequency and characteristics of falls. Participants with at least two falls in the prior year were classified as fallers. Each individual was assessed for postural stability during quiet stance and gait stability during 10 meters walking. Fall risk parameters of postural sway (COP area, velocity, path-length) were measured utilizing a standard forceplate coupled with an accelerometer affixed at the sternum. Additionally, parameters of gait stability (walking velocity, double support time, and double support time variability) were assessed utilizing an accelerometer affixed at the participant's sternum. Gait and postural stability analyses indicate that obese older adults who fell have significantly altered gait pattern (longer double support time and greater variability) exhibiting a loss of automaticity in walking and, postural instability as compared to their counterparts (i.e., higher sway area and path length, and higher sway velocity) further increasing the risk of a fall given a perturbation. Body weight/BMI is a risk factor for falls in older adults as measured by gait and postural stability parameters. 
    more » « less
  3. null (Ed.)
    People with moderate-to-severe cerebral palsy (CP) have the greatest need for postural control research yet are usually excluded from research due to deficits in sitting ability. We use a support system that allows us to quantify and model postural mechanisms in nonambulatory children with CP. A continuous external bench tilt stimulus was used to evoke trunk postural responses in seven sitting children with CP (ages 2.5 to 13 yr) in several test sessions. Eight healthy adults were also included. Postural sway was analyzed with root mean square (RMS) sway and RMS sway velocity, along with frequency response functions (FRF, gain and phase) and coherence functions across two different stimulus amplitudes. A feedback model (including sensorimotor noise, passive, reflexive, and sensory integration mechanisms) was developed to hypothesize how postural control mechanisms are organized and function. Experimental results showed large RMS sway, FRF gains, and variability compared with adults. Modeling suggested that many subjects with CP adopted “simple” control with major contributions from a passive and reflexive mechanism and only a small contribution from active sensory integration. In contrast, mature trunk postural control includes major contributions from sensory integration and sensory reweighting. Relative to their body size, subjects with CP showed significantly lower damping, three to five times larger corrective torque, and much higher sensorimotor noise compared with the healthy mature system. Results are the first characterization of trunk postural responses and the first attempt at system identification in moderate-to-severe CP, an important step toward developing and evaluating more targeted interventions. NEW & NOTEWORTHY Cerebral palsy (CP) is the most common cause of motor disability in children. People with moderate-to-severe CP are typically nonambulatory and have major impairments in trunk postural control. We present the first systems identification study to investigate postural responses to external stimulus in this population and hypothesize at how the atypical postural control system functions with use of a feedback model. People with moderate-to-severe CP may use a simple control system with significant sensorimotor noise. 
    more » « less
  4. null (Ed.)
    Sedentary behavior is prevalent in older adults. Older adults often underutilize public parks for exercising because the parks do not support their needs and preferences. Engaging older adults on the redesign of parks may help promote active lifestyles. The objectives of this pilot study were to evaluate (1) the effects of wearing augmented reality (AR) and virtual reality (VR) glasses on balance; (2) the effects of different virtual walls separating the walking trail from the roadway on older adults’ gait, and (3) the preferences of the participants regarding wall design and other features. The participants were ten older adults (68 ± 5 years) who lived within two miles from the park. Balance and gait were assessed using a force plate and an instrumented mat. It was feasible to use AR with older adults in the park to evaluate features for redesign. Motion sickness was not an issue when using AR glasses, but balance was affected when wearing VR goggles. The area of postural sway increased approximately 25% when wearing AR glasses, and it increased by close to 70% when wearing VR goggles compared to no glasses. This difference is clinically relevant; however, we did not have enough power to identify the differences as statistically significant because of the small sample size and large variability. Different walls did not significantly affect the participants’ gait either because they did not alter the way they walked or because the holograms were insufficiently realistic to cause changes. The participants preferred a transparent wall rather than tall or short solid walls to separate the park from the roadway. 
    more » « less
  5. Many individuals with disabling conditions have difficulty with gait and balance control that may result in a fall. Exoskeletons are becoming an increasingly popular technology to aid in walking. Despite being a significant aid in increasing mobility, little attention has been paid to exoskeleton features to mitigate falls. To develop improved exoskeleton stability, quantitative information regarding how a user reacts to postural challenges while wearing the exoskeleton is needed. Assessing the unique responses of individuals to postural perturbations while wearing an exoskeleton provides critical information necessary to effectively accommodate a variety of individual response patterns. This report provides kinematic and neuromuscular data obtained from seven healthy, college-aged individuals during posterior support surface translations with and without wearing a lower limb exoskeleton. A 2-min, static baseline standing trial was also obtained. Outcome measures included a variety of 0 dimensional (OD) measures such as center of pressure (COP) RMS, peak amplitude, velocities, pathlength, and electromyographic (EMG) RMS, and peak amplitudes. These measures were obtained during epochs associated with the response to the perturbations: baseline, response, and recovery. T-tests were used to explore potential statistical differences between the exoskeleton and no exoskeleton conditions. Time series waveforms (1D) of the COP and EMG data were also analyzed. Statistical parametric mapping (SPM) was used to evaluate the 1D COP and EMG waveforms obtained during the epochs with and without wearing the exoskeleton. The results indicated that during quiet stance, COP velocity was increased while wearing the exoskeleton, but the magnitude of sway was unchanged. The OD COP measures revealed that wearing the exoskeleton significantly reduced the sway magnitude and velocity in response to the perturbations. There were no systematic effects of wearing the exoskeleton on EMG. SPM analysis revealed that there was a range of individual responses; both behaviorally (COP) and among neuromuscular activation patterns (EMG). Using both the OD and 1D measures provided a more comprehensive representation of how wearing the exoskeleton impacts the responses to posterior perturbations. This study supports a growing body of evidence that exoskeletons must be personalized to meet the specific capabilities and needs of each individual end-user. 
    more » « less