- Award ID(s):
- 1922658
- PAR ID:
- 10437733
- Date Published:
- Journal Name:
- Foundations of Computational Mathematics (FoCM), workshop on Computational Optimal Transport, Paris, France
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Krause, Andreas ; Brunskill, Emma ; Cho, Kyunghyun ; Engelhardt, Barbara ; Sabato, Sivan ; Scarlett, Jonathan (Ed.)We consider the problem of estimating the optimal transport map between two probability distributions, P and Q in R^d, on the basis of i.i.d. samples. All existing statistical analyses of this problem require the assumption that the transport map is Lipschitz, a strong requirement that, in particular, excludes any examples where the transport map is discontinuous. As a first step towards developing estimation procedures for discontinuous maps, we consider the important special case where the data distribution Q is a discrete measure supported on a finite number of points in R^d. We study a computationally efficient estimator initially proposed by Pooladian & Niles-Weed (2021), based on entropic optimal transport, and show in the semi-discrete setting that it converges at the minimax-optimal rate n^{−1/2}, independent of dimension. Other standard map estimation techniques both lack finite-sample guarantees in this setting and provably suffer from the curse of dimensionality. We confirm these results in numerical experiments, and provide experiments for other settings, not covered by our theory, which indicate that the entropic estimator is a promising methodology for other discontinuous transport map estimation problems.more » « less
-
We establish basic properties of a variant of the semi-discrete optimal transport problem in a relatively general setting. In this problem, one is given an absolutely continuous source measure and cost function, along with a finite set which will be the support of the target measure, and a “storage fee” function. The goal is to find a map for which the total transport cost plus the storage fee evaluated on the masses of the pushforward of the source measure is minimized. We prove existence and uniqueness for the problem, derive a dual problem for which strong duality holds, and give a characterization of dual maximizers and primal minimizers. Additionally, we find some stability results for minimizers and a Γ-convergence result as the target set becomes denser and denser in a continuum domain.more » « less
-
null (Ed.)Abstract Estimating the mean of a probability distribution using i.i.d. samples is a classical problem in statistics, wherein finite-sample optimal estimators are sought under various distributional assumptions. In this paper, we consider the problem of mean estimation when independent samples are drawn from $d$-dimensional non-identical distributions possessing a common mean. When the distributions are radially symmetric and unimodal, we propose a novel estimator, which is a hybrid of the modal interval, shorth and median estimators and whose performance adapts to the level of heterogeneity in the data. We show that our estimator is near optimal when data are i.i.d. and when the fraction of ‘low-noise’ distributions is as small as $\varOmega \left (\frac{d \log n}{n}\right )$, where $n$ is the number of samples. We also derive minimax lower bounds on the expected error of any estimator that is agnostic to the scales of individual data points. Finally, we extend our theory to linear regression. In both the mean estimation and regression settings, we present computationally feasible versions of our estimators that run in time polynomial in the number of data points.more » « less
-
Summary Modern empirical work in regression discontinuity (RD) designs often employs local polynomial estimation and inference with a mean square error (MSE) optimal bandwidth choice. This bandwidth yields an MSE-optimal RD treatment effect estimator, but is by construction invalid for inference. Robust bias-corrected (RBC) inference methods are valid when using the MSE-optimal bandwidth, but we show that they yield suboptimal confidence intervals in terms of coverage error. We establish valid coverage error expansions for RBC confidence interval estimators and use these results to propose new inference-optimal bandwidth choices for forming these intervals. We find that the standard MSE-optimal bandwidth for the RD point estimator is too large when the goal is to construct RBC confidence intervals with the smaller coverage error rate. We further optimize the constant terms behind the coverage error to derive new optimal choices for the auxiliary bandwidth required for RBC inference. Our expansions also establish that RBC inference yields higher-order refinements (relative to traditional undersmoothing) in the context of RD designs. Our main results cover sharp and sharp kink RD designs under conditional heteroskedasticity, and we discuss extensions to fuzzy and other RD designs, clustered sampling, and pre-intervention covariates adjustments. The theoretical findings are illustrated with a Monte Carlo experiment and an empirical application, and the main methodological results are available in R and Stata packages.
-
Abstract We consider the numerical solution of the optimal transport problem between densities that are supported on sets of unequal dimension. Recent work by McCann and Pass reformulates this problem into a non-local Monge-Ampère type equation. We provide a new level-set framework for interpreting this nonlinear PDE. We also propose a novel discretisation that combines carefully constructed monotone finite difference schemes with a variable-support discrete version of the Dirac delta function. The resulting method is consistent and monotone. These new techniques are described and implemented in the setting of 1D to 2D transport, but they can easily be generalised to higher dimensions. Several challenging computational tests validate the new numerical method.