skip to main content


Title: Surface ionization waves propagating over non-planar substrates: wavy surfaces, cut-pores and droplets
Abstract Atmospheric pressure plasmas intersecting with dielectric surfaces will often transition into surface ionization waves (SIWs). Several applications of these discharges are purposely configured to be SIWs. During propagation of an SIW over a dielectric surface, the plasma charges the surface while responding to changes in geometrical and electrical material properties. This is particularly important for non-planar surfaces where polarization of the dielectric results in local electric field enhancement. In this paper, we discuss results from computational investigations of negative and positive SIWs propagating over nonplanar dielectrics in three configurations—wavy surfaces, cuts through porous materials and water droplets on flat surfaces. We found that negative SIWs are particularly sensitive to the electric field enhancement that occurs at the crests of non-planar surfaces. The local increase in ionization rates by the electric field enhancement can result in the SIW detaching from the surface, which produces non-uniform plasma exposure of the surface. Positive SIWs tend to adhere to the surface to a greater degree. These trends indicate that treatment of pathogen containing droplets on surfaces may be best performed by positive SIWs. The same principles apply to the surfaces cut through pores. Buried pores with small openings to the SIW may be filled by plasma by either flow of plasma into the pore (large opening) or initiated by photoionization (small opening), depending on the size of the opening compared to the Debye length.  more » « less
Award ID(s):
1902878 1747739
PAR ID:
10437747
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Plasma Sources Science and Technology
Volume:
31
Issue:
11
ISSN:
0963-0252
Page Range / eLocation ID:
115001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Atmospheric pressure plasma jets (APPJs) are increasingly being used to functionalize polymers and dielectric materials for biomedical and biotechnology applications. Once such application is microfluidic labs-on-a-chip consisting of dielectric slabs with microchannel grooves hundreds of microns in width and depth. The periodic channels, an example of a complex surface, present challenges in terms of directly and uniformly exposing the surface to the plasma. In this paper, we discuss results from computational and experimental investigations of negative APPJs sustained in Ar/N2mixtures flowing into ambient air and incident onto a series of microchannels. Results from two-dimensional plasma hydrodynamics modeling are compared to experimental measurements of electric field and fast-camera imaging. The propagation of the plasma across dry microchannels largely consists of a sequence of surface ionization waves (SIWs) on the top ridges of the channels and bulk ionization waves (IWs) crossing over the channels. The IWs are directed into electric field enhanced vertices of the next ridge. The charging of these ridges produce reverse IWs responsible for the majority of the ionization. The propagation of the plasma across water filled microchannels evolve into hopping SIWs between the leading edges of the water channels, regions of electric enhancement due to polarization of the water. Positive, reverse IWs follow the pre-ionized path of the initial negative waves.

     
    more » « less
  2. Abstract

    The electric field distribution in the ionization waves propagating over a microchannel array dielectric surface, with the channels either empty or filled with distilled water, is measured by ps Electric Field Induced Second Harmonic (EFISH) generation. The surface ionization wave is initiated by the atmospheric pressure N2-Ar plasma jet impinging on the surface vertically and powered by ns pulse discharge bursts. The results show that the electric field inside the microchannels, specifically its horizontal component, is enhanced by up to a factor of 2. The field enhancement region is localized within the channels. The vertical electric field inside the channels lags in time compared to the field measured at the ridges, indicating the transient reversal of the ionization wave propagation direction across the channels (toward the jet). This is consistent with the phase-locked plasma emission images and confirmed by the kinetic modeling predictions, which show that the ionization wave “jumps” over the empty channels and propagates into the channels only after the jump between the adjacent ridges. When the channels are filled with water, the wave speed increases by up to 50%, due to the higher effective dielectric constant of the surface. No evidence of a significant electric field enhancement near the dielectric surface (ceramic or water) has been detected, within the spatial resolution of the present diagnostic, ~100 μm.

     
    more » « less
  3. Abstract

    The ignition of plasmas in liquids has applications from medical instrumentation to manipulation of liquid chemistry. Formation of plasmas directly in a liquid often requires prohibitively large voltages to initiate breakdown. Producing plasma streamers in bubbles submerged in a liquid with higher permittivity can significantly lower the voltage needed to initiate a discharge by reducing the electric field required to produce breakdown. The proximity of the bubble to the electrodes and the shape of the bubbles play critical roles in the manner in which the plasma is produced in, and propagates through, the bubble. In this paper, we discuss results from a three-dimensional direct numerical simulation (DNS) used to investigate the shapes of bubbles formed by injection of air into water. Comparisons are made to results from a companion experiment. A two-dimensional plasma hydrodynamics model was then used to capture the plasma streamer propagation in the bubble using a static bubble geometry generated by the DNS The simulations showed two different modes for streamer formation depending on the bubble shape. In an elliptical bubble, a short electron avalanche triggered a surface ionization wave (SIWs) resulting in plasma propagating along the surface of the bubble. In a circular bubble, an electron avalanche first traveled through the middle of the bubble before two SIWs began to propagate from the point closest to the grounded electrode where a volumetric streamer intersected the surface. In an elliptical bubble approaching a powered electrode in a pin-to-pin configuration, we experimentally observed streamer behavior that qualitatively corresponds with computational results. Optical emission captured over the lifetime of the streamer curve along the path of deformed bubbles, suggesting propagation of the streamer along the liquid/gas boundary interface. Plasma generation supported by the local field enhancement of the deformed bubble surface boundaries is a mechanism that is likely responsible for initiating streamer formation.

     
    more » « less
  4. Abstract

    Manipulating surface charge, electric field, and plasma afterglow in a non-equilibrium plasma is critical to control plasma-surface interaction for plasma catalysis and manufacturing. Here, we show enhancements of surface charge, electric field during breakdown, and afterglow by ferroelectric barrier discharge. The results show that the ferroelectrics manifest spontaneous electric polarization to increase the surface charge by two orders of magnitude compared to discharge with an alumina barrier. Time-resolved in-situ electric field measurements reveal that the fast polarization of ferroelectrics enhances the electric field during the breakdown in streamer discharge and doubles the electric field compared to the dielectric barrier discharge. Moreover, due to the existence of surface charge, the ferroelectric electrode extends the afterglow time and makes discharge sustained longer when alternating the external electric field polarity. The present results show that ferroelectric barrier discharge offers a promising technique to tune plasma properties for efficient plasma catalysis and electrified manufacturing.

     
    more » « less
  5. Interactions at the interface between atmospheric pressure plasmas and liquids are being investigated to address applications ranging from nanoparticle synthesis to decontamination and fertilizer production. Many of these applications involve activation of droplets wherein the droplet is fully immersed in the plasma and synergistically interacts with the plasma. To better understand these interactions, two-dimensional modeling of radio frequency (RF) glow discharges at atmospheric pressure operated in He with an embedded lossy dielectric droplet (tens of microns in size) was performed. The properties of the sheath that forms around the droplet were investigated over the RF cycle. The electric field in the bulk plasma polarizes the dielectric droplet while the electron drift in the external electric field is shadowed by the droplet. The interaction between the bulk and sheath electric fields produces a maximum in E/N (electric field/gas number density) at the equator on one side of the droplet where the bulk and sheath fields are aligned in the same direction and a minimum along the opposite equator. Due to resistive heating, the electron temperature T e is maximum 45° above and below the equator of the droplet where power deposition per electron is the highest. Although the droplet is, on the average, negatively charged, the charge density on the droplet is positive on the poles and negative on the equator, as the electron motion is primarily due to diffusion at the poles but due to drift at the equator. 
    more » « less