skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling Dynamical Systems with Neural Hybrid System Framework via Maximum Entropy Approach
In this paper, a data-driven neural hybrid system modeling framework via the Maximum Entropy partitioning approach is proposed for complex dynamical system modeling such as human motion dynamics. The sampled data collected from the system is partitioned into segmented data sets using the Maximum Entropy approach, and the mode transition logic is then defined. Then, as the local dynamical description for their corresponding partitions, a collection of small-scale neural networks is trained. Following a neural hybrid system model of the system, a set-valued reachability analysis with low computation cost is provided based on interval analysis and a split and combined process to demonstrate the benefits of our approach in computationally expensive tasks. Finally, a numerical examples of the limit cycle and a human behavior modeling example are provided to demonstrate the effectiveness and efficiency of the developed methods.  more » « less
Award ID(s):
2223035 2143351
PAR ID:
10437767
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2023 American Control Conference (ACC)
Page Range / eLocation ID:
3907 to 3712
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, a computationally efficient data-driven hybrid automaton model is proposed to capture unknown complex dynamical system behaviors using multiple neural networks. The sampled data of the system is divided by valid partitions into groups corresponding to their topologies and based on which, transition guards are defined. Then, a collection of small-scale neural networks that are computationally efficient are trained as the local dynamical description for their corresponding topologies. After modeling the system with a neural-network-based hybrid automaton, the set-valued reachability analysis with low computation cost is provided based on interval analysis and a split and combined process. At last, a numerical example of the limit cycle is presented to illustrate that the developed models can significantly reduce the computational cost in reachable set computation without sacrificing any modeling precision. 
    more » « less
  2. Abstract Neural networks have been widely applied in system dynamics modeling. One particular type of networks, hybrid neural networks, combines a neural network model with a physical model, which can increase rate of convergence in training. However, most existing hybrid neural network methods require an explicit physical model constructed, which sometimes might not be feasible in practice or could weaken the capability of capturing complex and hidden physical phenomena. In this paper, we propose a novel approach to construct a hybrid neural network. The new method incorporates the physical information to the structure of network construction, but does not need an explicit physical model constructed. The method is then applied to modeling of bit-rock interaction in the down-hole drilling system as a case study, to demonstrate its effectiveness in modeling complex process and efficiency of convergence in training. 
    more » « less
  3. Abstract This article proposes a neural network hybrid modeling framework for dynamics learning to promote an interpretable, computationally efficient method of dynamics learning and system identification. First, a low-level model is trained to learn the system dynamics, which utilizes multiple simple neural networks to approximate the local dynamics generated from data-driven partitions. Then, based on the low-level model, a high-level model is trained to abstract the low-level neural hybrid system model into a transition system that allows computational tree logic (CTL) verification to promote model’s ability to handle human interaction and verification efficiency. 
    more » « less
  4. Alber, Mark (Ed.)
    Biological systems exhibit complex dynamics that differential equations can often adeptly represent. Ordinary differential equation models are widespread; until recently their construction has required extensive prior knowledge of the system. Machine learning methods offer alternative means of model construction: differential equation models can be learnt from data via model discovery using sparse identification of nonlinear dynamics (SINDy). However, SINDy struggles with realistic levels of biological noise and is limited in its ability to incorporate prior knowledge of the system. We propose a data-driven framework for model discovery and model selection using hybrid dynamical systems: partial models containing missing terms. Neural networks are used to approximate the unknown dynamics of a system, enabling the denoising of the data while simultaneously learning the latent dynamics. Simulations from the fitted neural network are then used to infer models using sparse regression. We show, via model selection, that model discovery using hybrid dynamical systems outperforms alternative approaches. We find it possible to infer models correctly up to high levels of biological noise of different types. We demonstrate the potential to learn models from sparse, noisy data in application to a canonical cell state transition using data derived from single-cell transcriptomics. Overall, this approach provides a practical framework for model discovery in biology in cases where data are noisy and sparse, of particular utility when the underlying biological mechanisms are partially but incompletely known. 
    more » « less
  5. N. Matni, M. Morari (Ed.)
    This paper proposes a computationally efficient framework, based on interval analysis, for rigorous verification of nonlinear continuous-time dynamical systems with neural network controllers. Given a neural network, we use an existing verification algorithm to construct inclusion functions for its input-output behavior. Inspired by mixed monotone theory, we embed the closed-loop dynamics into a larger system using an inclusion function of the neural network and a decomposition function of the open-loop system. This embedding provides a scalable approach for safety analysis of the neural control loop while preserving the nonlinear structure of the system. We show that one can efficiently compute hyper-rectangular over-approximations of the reachable sets using a single trajectory of the embedding system. We design an algorithm to leverage this computational advantage through partitioning strategies, improving our reachable set estimates while balancing its runtime with tunable parameters. We demonstrate the performance of this algorithm through two case studies. First, we demonstrate this method’s strength in complex nonlinear environments. Then, we show that our approach matches the performance of the state-of-the art verification algorithm for linear discretized systems. 
    more » « less