skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Expect the unexpected: conventional and unconventional roles for cadherins in collective cell migration
Migrating cell collectives navigate complex tissue environments both during normal development and in pathological contexts such as tumor invasion and metastasis. To do this, cells in collectives must stay together but also communicate information across the group. The cadherin superfamily of proteins mediates junctional adhesions between cells, but also serve many essential functions in collective cell migration. Besides keeping migrating cell collectives cohesive, cadherins help follower cells maintain their attachment to leader cells, transfer information about front-rear polarity among the cohort, sense and respond to changes in the tissue environment, and promote intracellular signaling, in addition to other cellular behaviors. In this review, we highlight recent studies that reveal diverse but critical roles for both classical and atypical cadherins in collective cell migration, specifically focusing on four in vivo model systems in development: the Drosophila border cells, zebrafish mesendodermal cells, Drosophila follicle rotation, and Xenopus neural crest cells.  more » « less
Award ID(s):
2027617
PAR ID:
10437812
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Biochemical Society Transactions
ISSN:
0300-5127
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bergstralh, D (Ed.)
    Abstract Collective cell migration is critical to embryonic development, wound healing, and the immune response, but also drives tumor dissemination. Understanding how cell collectives coordinate migration in vivo has been a challenge, with potential therapeutic benefits that range from addressing developmental defects to designing targeted cancer treatments. The small GTPase Rap1 has emerged as a regulator of both embryogenesis and cancer cell migration. How active Rap1 coordinates downstream signaling functions required for coordinated collective migration is poorly understood. Drosophila border cells undergo a stereotyped and genetically tractable in vivo migration within the developing egg chamber of the ovary. This group of 6–8 cells migrates through a densely packed tissue microenvironment and serves as an excellent model for collective cell migration during development and disease. Rap1, like all small GTPases, has distinct activity state switches that link extracellular signals to organized cell behaviors. Proper regulation of Rap1 activity is essential for successful border cell migration yet the signaling partners and other downstream effectors are poorly characterized. Using the known requirement for Rap1 in border cell migration, we conducted a dominant suppressor screen for genes whose heterozygous loss modifies the migration defects observed upon constitutively active Rap1V12 expression. Here, we identified 7 genomic regions on the X chromosome that interact with Rap1V12. We mapped three genomic regions to single Rap1-interacting genes, frizzled 4, Ubiquitin-specific protease 16/45, and strawberry notch. Thus, this unbiased screening approach identified multiple new candidate regulators of Rap1 activity with roles in collective border cell migration. 
    more » « less
  2. Abstract The ability to program collective cell migration can allow us to control critical multicellular processes in development, regenerative medicine, and invasive disease. However, while various technologies exist to make individual cells migrate, translating these tools to control myriad, collectively interacting cells within a single tissue poses many challenges. For instance, do cells within the same tissue interpret a global migration ‘command’ differently based on where they are in the tissue? Similarly, since no stimulus is permanent, what are the long-term effects of transient commands on collective cell dynamics? We investigate these questions by bioelectrically programming large epithelial tissues to globally migrate ‘rightward’ via electrotaxis. Tissues clearly developed distinct rear, middle, side, and front responses to a single global migration stimulus. Furthermore, at no point poststimulation did tissues return to their prestimulation behavior, instead equilibrating to a 3rd, new migratory state. These unique dynamics suggested that programmed migration resets tissue mechanical state, which was confirmed by transient chemical disruption of cell–cell junctions, analysis of strain wave propagation patterns, and quantification of cellular crowd dynamics. Overall, this work demonstrates how externally driving the collective migration of a tissue can reprogram baseline cell–cell interactions and collective dynamics, even well beyond the end of the global migratory cue, and emphasizes the importance of considering the supracellular context of tissues and other collectives when attempting to program crowd behaviors. 
    more » « less
  3. Collective cell migration is central to many developmental and pathological processes. However, the mechanisms that keep cell collectives together and coordinate movement of multiple cells are poorly understood. Using the Drosophila border cell migration model, we find that Protein phosphatase 1 (Pp1) activity controls collective cell cohesion and migration. Inhibition of Pp1 causes border cells to round up, dissociate, and move as single cells with altered motility. We present evidence that Pp1 promotes proper levels of cadherin-catenin complex proteins at cell-cell junctions within the cluster to keep border cells together. Pp1 further restricts actomyosin contractility to the cluster periphery rather than at individual internal border cell contacts. We show that the myosin phosphatase Pp1 complex, which inhibits non-muscle myosin-II (Myo-II) activity, coordinates border cell shape and cluster cohesion. Given the high conservation of Pp1 complexes, this study identifies Pp1 as a major regulator of collective versus single cell migration. 
    more » « less
  4. Ribosome biogenesis is critical for the proper production of proteins in cells and has emerged as a regulator of cell invasion and migration in development and in cancer. The Drosophila border cells form a collective that invades and migrates through the surrounding tissue during oogenesis. We previously found that a significant number of ribosome biogenesis genes are differentially expressed from early to late migration stages. Here, we performed a small-scale RNAi screen of a subset of these ribosome genes. Knockdown of seven genes disrupted border cell migration, thus revealing a role for ribosome biogenesis genes in regulating collective cell migration. 
    more » « less
  5. Abstract Collective migration of epithelial cells drives diverse tissue remodeling processes. In many cases, a free tissue edge polarizes the cells to promote directed motion, but how edge-free or closed epithelia initiate migration remains unclear. Here, we show that the rotational migration of follicular epithelial cells in theDrosophilaegg chamber is a self-organizing process. Combining experiments and theoretical modeling, we identify a positive feedback loop in which the mechanosensitive behavior of the atypical cadherin Fat2 synergizes with the rigid-body dynamics of the egg chamber to both initiate and sustain rotation. Mechanical constraints arising from cell–cell interactions and tissue geometry further align this motion around the egg chamber’s anterior–posterior axis. Our findings reveal a biophysical mechanism — combining Fat2-mediated velocity–polarity alignment, rigid-body dynamics, and tissue geometry — by which a closed epithelial tissue self-organizes into persistent, large-scale rotational migrationin vivo, expanding current flocking theories. 
    more » « less