skip to main content


Title: Self-similarities and Power Laws in the Time-resolved Spectra of GRB 190114C, GRB 130427A, GRB 160509A, and GRB 160625B
Abstract Binary-driven hypernova (BdHN) models have been adopted to explain the observed properties of long gamma-ray bursts (GRBs). Here, we perform a comprehensive data analysis (temporal and spectral analysis, GeV emission, and afterglow) on GRB 130427A, GRB 160509A, and GRB 160625B. We identify three specific episodes characterized by different observational signatures and show that these episodes can be explained and predicted to occur within the framework of the BdHNe I model, as first observed in GRB 190114C and reported in an accompanying paper. Episode 1 includes the “SN-rise” with the characteristic cutoff power-law spectrum; Episode 2 is initiated by the moment of formation of the black hole, coincident with the onset of the GeV emission and the ultrarelativistic prompt emission phase, and is characterized by a cutoff power law and blackbody spectra; Episode 3 is the “cavity,” with its characteristic featureless spectrum.  more » « less
Award ID(s):
2011759
NSF-PAR ID:
10437824
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
945
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Gamma-ray bursts (GRBs) exhibit a diversity of spectra. Several spectral models (e.g., Band, cutoff power law (CPL), and blackbody) and their hybrid versions (e.g., Band+blackbody) have been widely used to fit the observed GRB spectra. Here, we attempt to collect all the bursts detected by Fermi/GBM with known redshifts from 2008 July to 2022 May, having been motivated to (i) provide a parameter catalog independent of the official Fermi/GBM team and (ii) achieve a “clean” model-based GRB spectral energy correlation analysis. A nearly complete GRB sample is created, containing 153 such bursts (136 long GRBs and 17 short GRBs). Using the sample and by performing detailed spectral analysis and model comparisons, we investigate two GRB spectral energy correlations: the correlation of the cosmological rest-frame peak energy ( E p, z ) of the ν F ν prompt emission spectrum with (i) the isotropic-bolometric-equivalent emission energy E γ ,iso (the Amati relation) and (ii) the isotropic-bolometric-equivalent peak luminosity L p,iso (the Yonetoku relation). From a linear regression analysis, a tight correlation between E p, z and E γ ,iso (and L γ ,iso ) is found for both Band-like and CPL-like bursts (except for CPL-like long burst E p, z – E γ ,iso correlation). More interestingly, CPL-like bursts do not fall on the Band-like burst Amati and Yonetoku correlations, suggesting distinct radiation processes, and pointing to the fact that these spectral energy correlations are tightly reliant on the model-wise properties. 
    more » « less
  2. ABSTRACT

    We present counts-level fits to the multi-instrument (keV–GeV) data of the early afterglow (4 ks, 22 ks) of the brightest gamma-ray burst detected to date, GRB 221009A. The complexity of the data reduction, due to the unprecedented brightness and the location in the Galactic plane, is critically addressed. The energy spectrum is found to be well described by a smoothly broken power law with a break energy at a few keV. Three interpretations (slow/fast cooling or the transition between these) within the framework of forward shock synchrotron emission, from accelerated and subsequently cooled electrons, are found. The physical implications for each of these scenarios are discussed.

     
    more » « less
  3. Abstract GRB 171205A is a low-luminosity, long-duration gamma-ray burst (GRB) associated with SN 2017iuk, a broad-line type Ic supernova (SN). It is consistent with having been formed in the core collapse of a widely separated binary, which we have called the binary-driven hypernova of type III. The core collapse of the CO star forms a newborn NS ( ν NS) and the SN explosion. Fallback accretion transfers mass and angular momentum to the ν NS, here assumed to be born non-rotating. The accretion energy injected into the expanding stellar layers powers the prompt emission. The multiwavelength power-law afterglow is explained by the synchrotron radiation of electrons in the SN ejecta, powered by energy injected by the spinning ν NS. We calculate the amount of mass and angular momentum gained by the ν NS, as well as the ν NS rotational evolution. The ν NS spins up to a period of 47 ms, then releases its rotational energy powering the synchrotron emission of the afterglow. The paucity of the ν NS spin explains the low-luminosity characteristic and that the optical emission of the SN from the nickel radioactive decay outshines the optical emission from the synchrotron radiation. From the ν NS evolution, we infer that the SN explosion had to occur at most 7.36 h before the GRB trigger. Therefore, for the first time, the analysis of the GRB data leads to the time of occurrence of the CO core collapse leading to the SN explosion and the electromagnetic emission of the GRB event. 
    more » « less
  4. Abstract Long-duration GRB 200829A was detected by Fermi-GBM and Swift-BAT/XRT, and then rapidly observed by other ground-based telescopes. It has a weak γ -ray emission in the very early phase and is followed by a bright spiky γ -ray emission pulse. The radiation spectrum of the very early emission is best fitted by a power-law function with index ∼−1.7. However, the bright spiky γ -ray pulse, especially the time around the peak, exhibits a distinct two-component radiation spectrum, i.e., Band function combined with a blackbody radiation spectrum. We infer the photospheric properties and reveal a medium magnetization at a photospheric position by adopting the initial size of the outflow as r 0 = 10 9 cm. It implies that the Band component in this pulse may be formed during the dissipation of the magnetic field. The power-law radiation spectra found in the very early prompt emission may imply the external-shock origination of this phase. Then, we perform the Markov Chain Monte Carlo method fitting on the light curves of this burst, where the jet corresponding to the γ -ray pulse at around 20 s is used to refresh the external shock. It is shown that the light curves of the very early phase and X-ray afterglow after 40 s, involving the X-ray bump at around 100 s, can be well modeled in the external-shock scenario. For the obtained initial outflow, we estimate the minimum magnetization factor of the jet based on the fact that the photospheric emission of this jet is missed in the very early phase. 
    more » « less
  5. Abstract We present James Webb Space Telescope (JWST) and Hubble Space Telescope (HST) observations of the afterglow of GRB 221009A, the brightest gamma-ray burst (GRB) ever observed. This includes the first mid-IR spectra of any GRB, obtained with JWST/Near Infrared Spectrograph (0.6–5.5 micron) and Mid-Infrared Instrument (5–12 micron), 12 days after the burst. Assuming that the intrinsic spectral slope is a single power law, with F ν ∝ ν − β , we obtain β ≈ 0.35, modified by substantial dust extinction with A V = 4.9. This suggests extinction above the notional Galactic value, possibly due to patchy extinction within the Milky Way or dust in the GRB host galaxy. It further implies that the X-ray and optical/IR regimes are not on the same segment of the synchrotron spectrum of the afterglow. If the cooling break lies between the X-ray and optical/IR, then the temporal decay rates would only match a post-jet-break model, with electron index p < 2, and with the jet expanding into a uniform ISM medium. The shape of the JWST spectrum is near-identical in the optical/near-IR to X-SHOOTER spectroscopy obtained at 0.5 days and to later time observations with HST. The lack of spectral evolution suggests that any accompanying supernova (SN) is either substantially fainter or bluer than SN 1998bw, the proto-type GRB-SN. Our HST observations also reveal a disk-like host galaxy, viewed close to edge-on, that further complicates the isolation of any SN component. The host galaxy appears rather typical among long-GRB hosts and suggests that the extreme properties of GRB 221009A are not directly tied to its galaxy-scale environment. 
    more » « less