skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: GRB 171205A: Hypernova and Newborn Neutron Star
Abstract GRB 171205A is a low-luminosity, long-duration gamma-ray burst (GRB) associated with SN 2017iuk, a broad-line type Ic supernova (SN). It is consistent with having been formed in the core collapse of a widely separated binary, which we have called the binary-driven hypernova of type III. The core collapse of the CO star forms a newborn NS ( ν NS) and the SN explosion. Fallback accretion transfers mass and angular momentum to the ν NS, here assumed to be born non-rotating. The accretion energy injected into the expanding stellar layers powers the prompt emission. The multiwavelength power-law afterglow is explained by the synchrotron radiation of electrons in the SN ejecta, powered by energy injected by the spinning ν NS. We calculate the amount of mass and angular momentum gained by the ν NS, as well as the ν NS rotational evolution. The ν NS spins up to a period of 47 ms, then releases its rotational energy powering the synchrotron emission of the afterglow. The paucity of the ν NS spin explains the low-luminosity characteristic and that the optical emission of the SN from the nickel radioactive decay outshines the optical emission from the synchrotron radiation. From the ν NS evolution, we infer that the SN explosion had to occur at most 7.36 h before the GRB trigger. Therefore, for the first time, the analysis of the GRB data leads to the time of occurrence of the CO core collapse leading to the SN explosion and the electromagnetic emission of the GRB event.  more » « less
Award ID(s):
2011759
PAR ID:
10437834
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
945
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
95
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract GRB 190829A is the fourth-closest gamma-ray burst to date ( z = 0.0785). Owing to its wide range of radio, optical, X-ray, and very-high-energy observations by HESS, it has become an essential new source that has been examined by various models with complementary approaches. Here, we show in GRB 190829A that the double prompt pulses and the three multiwavelength afterglows are consistent with the type II binary-driven hypernova model. The progenitor is a binary composed of a carbon–oxygen (CO) star and a neutron star (NS) companion. The gravitational collapse of the iron core of the CO star produces a supernova (SN) explosion and leaves behind a new NS ( ν NS) at its center. The accretion of the SN ejecta onto the NS companion and onto the ν NS via matter fallback spins up the NSs and produces the double-peak prompt emission. The synchrotron emission from the expanding SN ejecta, with energy injection from the rapidly spinning ν NS and its subsequent spindown, leads to the afterglow in the radio, optical, and X-ray bands. We model the sequence of physical and related radiation processes in BdHNe, and focus on individuating the binary properties that play the relevant roles. 
    more » « less
  2. ABSTRACT How massive stars end their lives depends on the core mass, core angular momentum, and hydrogen envelopes at death. However, these key physical facets of stellar evolution can be severely affected by binary interactions. In turn, the effectiveness of binary interactions itself varies greatly depending on the initial conditions of the binaries, making the situation much more complex. We investigate systematically how binary interactions influence core–collapse progenitors and their fates. Binary evolution simulations are performed to survey the parameter space of supernova progenitors in solar metallicity binary systems and to delineate major evolutionary paths. We first study fixed binary mass ratios ($$q=M_2/M_1$$ = 0.5, 0.7, and 0.9) to elucidate the impacts of initial mass and initial separation on the outcomes, treating separately Type Ibc supernova, Type II supernova, accretion-induced collapse (AIC), rapidly rotating supernova (Ibc-R), black hole formation, and long gamma ray burst (long GRB). We then conduct 12 binary population synthesis model calculations, varying the initial condition distributions and binary evolution parameters, to estimate various supernova fractions. We obtain a Milky Way supernova rate $$R_{\rm SN} = (1.78$$–$$2.47) \times 10^{-2} \, {\rm yr}^{-1}$$ which is consistent with observations. We find the rates of AIC, Ibc-R, and long GRB to be $$\sim 1/100$$ the rate of regular supernovae. Our estimated long GRB rates are higher than the observed long GRB rate and close to the low luminosity GRB rate, although care must be taken considering our models are computed with solar metallicity. Furthering binary modelling and improving the inputs one by one will enable more detailed studies of these and other transients associated with massive stars. 
    more » « less
  3. Abstract The contemporaneous detection of gravitational waves and gamma rays from GW170817/GRB 170817A, followed by kilonova emission a day after, confirmed compact binary neutron star mergers as progenitors of short-duration gamma-ray bursts (GRBs) and cosmic sources of heavy r -process nuclei. However, the nature (and life span) of the merger remnant and the energy reservoir powering these bright gamma-ray flashes remains debated, while the first minutes after the merger are unexplored at optical wavelengths. Here, we report the earliest discovery of bright thermal optical emission associated with short GRB 180618A with extended gamma-ray emission—with ultraviolet and optical multicolor observations starting as soon as 1.4 minutes post-burst. The spectrum is consistent with a fast-fading afterglow and emerging thermal optical emission 15 minutes post-burst, which fades abruptly and chromatically (flux density F ν ∝ t − α , α = 4.6 ± 0.3) just 35 minutes after the GRB. Our observations from gamma rays to optical wavelengths are consistent with a hot nebula expanding at relativistic speeds, powered by the plasma winds from a newborn, rapidly spinning and highly magnetized neutron star (i.e., a millisecond magnetar), whose rotational energy is released at a rate L th ∝ t −(2.22±0.14) to reheat the unbound merger-remnant material. These results suggest that such neutron stars can survive the collapse to a black hole on timescales much larger than a few hundred milliseconds after the merger and power the GRB itself through accretion. Bright thermal optical counterparts to binary merger gravitational wave sources may be common in future wide-field fast-cadence sky surveys. 
    more » « less
  4. Abstract Both the core collapse of rotating massive stars, and the coalescence of neutron star (NS) binaries result in the formation of a hot, differentially rotating NS remnant. The timescales over which differential rotation is removed by internal angular-momentum transport processes (viscosity) have key implications for the remnant’s long-term stability and the NS equation of state (EOS). Guided by a nonrotating model of a cooling proto-NS, we estimate the dominant sources of viscosity using an externally imposed angular-velocity profile Ω(r). Although the magneto-rotational instability provides the dominant source of effective viscosity at large radii, convection and/or the Tayler–Spruit dynamo dominate in the core of merger remnants wheredΩ/dr≥ 0. Furthermore, the viscous timescale in the remnant core is sufficiently short that solid-body rotation will be enforced faster than matter is accreted from rotationally supported outer layers. Guided by these results, we develop a toy model for how the merger remnant core grows in mass and angular momentum due to accretion. We find that merger remnants with sufficiently massive and slowly rotating initial cores may collapse to black holes via envelope accretion, even when the total remnant mass is less than the usually considered threshold ≈1.2MTOVfor forming a stable solid-body rotating NS remnant (whereMTOVis the maximum nonrotating NS mass supported by the EOS). This qualitatively new picture of the post-merger remnant evolution and stability criterion has important implications for the expected electromagnetic counterparts from binary NS mergers and for multimessenger constraints on the NS EOS. 
    more » « less
  5. Abstract Gamma-ray bursts (GRBs) have historically been divided into two classes. Short-duration GRBs are associated with binary neutron star mergers (NSMs), while long-duration bursts are connected to a subset of core-collapse supernovae (SNe). GRB 211211A recently made headlines as the first long-duration burst purportedly generated by an NSM. The evidence for an NSM origin was excess optical and near-infrared emission consistent with the kilonova observed after the gravitational-wave-detected NSM GW170817. Kilonovae derive their unique electromagnetic signatures from the properties of the heavy elements synthesized by rapid neutron capture (ther-process) following the merger. Recent simulations suggest that the “collapsar” SNe that trigger long GRBs may also producer-process elements. While observations of GRB 211211A and its afterglow rule out an SN typical of those that follow long GRBs, an unusual collapsar could explain both the duration of GRB 211211A and ther-process-powered excess in its afterglow. We use semianalytic radiation transport modeling to evaluate low-mass collapsars as the progenitors of GRB 211211A–like events. We compare a suite of collapsar models to the afterglow-subtracted emission that followed GRB 211211A, and find the best agreement for models with high kinetic energies and an unexpected pattern of56Ni enrichment. We discuss how core-collapse explosions could produce such ejecta, and how distinct our predictions are from those generated by more straightforward kilonova models. We also show that radio observations can distinguish between kilonovae and the more massive collapsar ejecta we consider here. 
    more » « less