skip to main content


Title: Differentiable, Learnable, Regionalized Process‐Based Models With Multiphysical Outputs can Approach State‐Of‐The‐Art Hydrologic Prediction Accuracy
Abstract

Predictions of hydrologic variables across the entire water cycle have significant value for water resources management as well as downstream applications such as ecosystem and water quality modeling. Recently, purely data‐driven deep learning models like long short‐term memory (LSTM) showed seemingly insurmountable performance in modeling rainfall runoff and other geoscientific variables, yet they cannot predict untrained physical variables and remain challenging to interpret. Here, we show that differentiable, learnable, process‐based models (calledδmodels here) can approach the performance level of LSTM for the intensively observed variable (streamflow) with regionalized parameterization. We use a simple hydrologic model HBV as the backbone and use embedded neural networks, which can only be trained in a differentiable programming framework, to parameterize, enhance, or replace the process‐based model's modules. Without using an ensemble or post‐processor,δmodels can obtain a median Nash‐Sutcliffe efficiency of 0.732 for 671 basins across the USA for the Daymet forcing data set, compared to 0.748 from a state‐of‐the‐art LSTM model with the same setup. For another forcing data set, the difference is even smaller: 0.715 versus 0.722. Meanwhile, the resulting learnable process‐based models can output a full set of untrained variables, for example, soil and groundwater storage, snowpack, evapotranspiration, and baseflow, and can later be constrained by their observations. Both simulated evapotranspiration and fraction of discharge from baseflow agreed decently with alternative estimates. The general framework can work with models with various process complexity and opens up the path for learning physics from big data.

 
more » « less
Award ID(s):
1940190 1832294 2221880 2018280
NSF-PAR ID:
10377181
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
58
Issue:
10
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. As a genre of physics-informed machine learning, differentiable process-based hydrologic models (abbreviated as δ or delta models) with regionalized deep-network-based parameterization pipelines were recently shown to provide daily streamflow prediction performance closely approaching that of state-of-the-art long short-term memory (LSTM) deep networks. Meanwhile, δ models provide a full suite of diagnostic physical variables and guaranteed mass conservation. Here, we ran experiments to test (1) their ability to extrapolate to regions far from streamflow gauges and (2) their ability to make credible predictions of long-term (decadal-scale) change trends. We evaluated the models based on daily hydrograph metrics (Nash–Sutcliffe model efficiency coefficient, etc.) and predicted decadal streamflow trends. For prediction in ungauged basins (PUB; randomly sampled ungauged basins representing spatial interpolation), δ models either approached or surpassed the performance of LSTM in daily hydrograph metrics, depending on the meteorological forcing data used. They presented a comparable trend performance to LSTM for annual mean flow and high flow but worse trends for low flow. For prediction in ungauged regions (PUR; regional holdout test representing spatial extrapolation in a highly data-sparse scenario), δ models surpassed LSTM in daily hydrograph metrics, and their advantages in mean and high flow trends became prominent. In addition, an untrained variable, evapotranspiration, retained good seasonality even for extrapolated cases. The δ models' deep-network-based parameterization pipeline produced parameter fields that maintain remarkably stable spatial patterns even in highly data-scarce scenarios, which explains their robustness. Combined with their interpretability and ability to assimilate multi-source observations, the δ models are strong candidates for regional and global-scale hydrologic simulations and climate change impact assessment. 
    more » « less
  2. Abstract

    This study examines whether deep learning models can produce reliable future projections of streamflow under warming. We train a regional long short‐term memory network (LSTM) to daily streamflow in 15 watersheds in California and develop three process models (HYMOD, SAC‐SMA, and VIC) as benchmarks. We force all models with scenarios of warming and assess their hydrologic response, including shifts in the hydrograph and total runoff ratio. All process models show a shift to more winter runoff, reduced summer runoff, and a decline in the runoff ratio due to increased evapotranspiration. The LSTM predicts similar hydrograph shifts but in some watersheds predicts an unrealistic increase in the runoff ratio. We then test two alternative versions of the LSTM in which process model outputs are used as either additional training targets (i.e., multi‐output LSTM) or input features. Results indicate that the multi‐output LSTM does not correct the unrealistic streamflow projections under warming. The hybrid LSTM using estimates of evapotranspiration from SAC‐SMA as an additional input feature produces more realistic streamflow projections, but this does not hold for VIC or HYMOD. This suggests that the hybrid method depends on the fidelity of the process model. Finally, we test climate change responses under an LSTM trained to over 500 watersheds across the United States and find more realistic streamflow projections under warming. Ultimately, this work suggests that hybrid modeling may support the use of LSTMs for hydrologic projections under climate change, but so may training LSTMs to a large, diverse set of watersheds.

     
    more » « less
  3. Remotely sensed hydrologic variables, in conjunction with streamflow data, have been increasingly used to conduct multivariable calibration of hydrologic model parameters. Here, we calibrated the Soil and Water Assessment Tool (SWAT) model using different combinations of streamflow and remotely sensed hydrologic variables, including Atmosphere–Land Exchange Inverse (ALEXI) Evapotranspiration (ET), Moderate Resolution Imaging Spectroradiometer (MODIS) ET, and Soil MERGE (SMERGE) soil moisture. The results show that adding remotely sensed ET and soil moisture to the traditionally used streamflow for model calibration can impact the number and values of parameters sensitive to hydrologic modeling, but it does not necessarily improve the model performance. However, using remotely sensed ET or soil moisture data alone led to deterioration in model performance as compared with using streamflow only. In addition, we observed large discrepancies between ALEXI or MODIS ET data and the choice between these two datasets for model calibration can have significant implications for the performance of the SWAT model. The use of different combinations of streamflow, ET, and soil moisture data also resulted in noticeable differences in simulated hydrologic processes, such as runoff, percolation, and groundwater discharge. Finally, we compared the performance of SWAT and the SWAT-Carbon (SWAT-C) model under different multivariate calibration setups, and these two models exhibited pronounced differences in their performance in the validation period. Based on these results, we recommend (1) the assessment of various remotely sensed data (when multiple options available) for model calibration before choosing them for complementing the traditionally used streamflow data and (2) that different model structures be considered in the model calibration process to support robust hydrologic modeling. 
    more » « less
  4. Abstract

    Accurate prediction of snow water equivalent (SWE) can be valuable for water resource managers. Recently, deep learning methods such as long short-term memory (LSTM) have exhibited high accuracy in simulating hydrologic variables and can integrate lagged observations to improve prediction, but their benefits were not clear for SWE simulations. Here we tested an LSTM network with data integration (DI) for SWE in the western United States to integrate 30-day-lagged or 7-day-lagged observations of either SWE or satellite-observed snow cover fraction (SCF) to improve future predictions. SCF proved beneficial only for shallow-snow sites during snowmelt, while lagged SWE integration significantly improved prediction accuracy for both shallow- and deep-snow sites. The median Nash–Sutcliffe model efficiency coefficient (NSE) in temporal testing improved from 0.92 to 0.97 with 30-day-lagged SWE integration, and root-mean-square error (RMSE) and the difference between estimated and observed peak SWE valuesdmaxwere reduced by 41% and 57%, respectively. DI effectively mitigated accumulated model and forcing errors that would otherwise be persistent. Moreover, by applying DI to different observations (30-day-lagged, 7-day-lagged), we revealed the spatial distribution of errors with different persistent lengths. For example, integrating 30-day-lagged SWE was ineffective for ephemeral snow sites in the southwestern United States, but significantly reduced monthly-scale biases for regions with stable seasonal snowpack such as high-elevation sites in California. These biases are likely attributable to large interannual variability in snowfall or site-specific snow redistribution patterns that can accumulate to impactful levels over time for nonephemeral sites. These results set up benchmark levels and provide guidance for future model improvement strategies.

     
    more » « less
  5. Abstract

    Despite a multitude of small catchment studies, we lack a deep understanding of how variations in critical zone architecture lead to variations in hydrologic states and fluxes. This study characterizes hydrologic dynamics of 15 catchments of the U.S. Critical Zone Observatory (CZO) network where we hypothesized that our understanding of subsurface structure would illuminate patterns of hydrologic partitioning. The CZOs collect data sets that characterize the physical, chemical, and biological architecture of the subsurface, while also monitoring hydrologic fluxes such as streamflow, precipitation, and evapotranspiration. For the first time, we collate time series of hydrologic variables across the CZO network and begin the process of examining hydrologic signatures across sites. We find that catchments with low baseflow indices and high runoff sensitivity to storage receive most of their precipitation as rain and contain clay‐rich regolith profiles, prominent argillic horizons, and/or anthropogenic modifications. In contrast, sites with high baseflow indices and low runoff sensitivity to storage receive the majority of precipitation as snow and have more permeable regolith profiles. The seasonal variability of water balance components is a key control on the dynamic range of hydraulically connected water in the critical zone. These findings lead us to posit that water balance partitioning and streamflow hydraulics are linked through the coevolution of critical zone architecture but that much work remains to parse these controls out quantitatively.

     
    more » « less