A bstract Black hole event horizons and cosmological event horizons share many properties, making it natural to ask whether our recent advances in understanding black holes generalize to cosmology. To this end, we discuss a paradox that occurs if observers can access what lies beyond their cosmological horizon in the same way that they can access what lies beyond a black hole horizon. In particular, distinct observers with distinct horizons may encode the same portion of spacetime, violating the no-cloning theorem of quantum mechanics. This paradox is due precisely to the observer-dependence of the cosmological horizon — the sharpest difference from a black hole horizon — although we will argue that the gravity path integral avoids the paradox in controlled examples.
more »
« less
Event horizons are tunable factories of quantum entanglement
That event horizons generate quantum correlations via the Hawking effect is well known. We argue, however, that the creation of entanglement can be modulated, as desired, by appropriately illuminating the horizon. We adapt techniques from quantum information theory to quantify the entanglement produced during the Hawking process and show that, while ambient thermal noise (e.g. cosmic microwave background radiation) degrades it, the use of squeezed inputs can boost the nonseparability between the interior and exterior regions in a controlled manner. We further apply our ideas to analog event horizons concocted in the laboratory and insist that the ability to tune the generation of entanglement offers a promising route towards detecting quantum signatures of the elusive Hawking effect.
more »
« less
- Award ID(s):
- 2110273
- PAR ID:
- 10437874
- Date Published:
- Journal Name:
- International Journal of Modern Physics D
- Volume:
- 31
- Issue:
- 14
- ISSN:
- 0218-2718
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> We study 3d quantum gravity with two asymptotically anti-de Sitter regions, in particular, using its relation with coupled Alekseev-Shatashvili theories and Liouville theory. Expressions for the Hartle-Hawking state, thermal 2n-point functions, torus wormhole correlators and Wheeler-DeWitt wavefunctions in different bases are obtained using the ZZ boundary states in Liouville theory. Exact results in 2d Jackiw-Teitelboim (JT) gravity are uplifted to 3d gravity, with two copies of Liouville theory in 3d gravity playing a similar role as Schwarzian theory in JT gravity. The connection between 3d gravity and the Liouville ZZ boundary states are manifested by viewing BTZ black holes as Maldacena-Maoz wormholes, with the two wormhole boundaries glued along the ZZ boundaries. In this work, we also study the factorization problem of the Hartle-Hawking state in 3d gravity. With the relevant defect operator that imposes the necessary topological constraint for contractibility, the trace formula in gravity is modified in computing the entanglement entropy. This trace matches with the one from von Neumann algebra considerations, further reproducing the Bekenstein-Hawking area formula from entanglement entropy. Lastly, we propose a calculation for off-shell geometrical quantities that are responsible for the ramp behavior in the late time two-point functions, which follows from the understanding of the Liouville FZZT boundary states in the context of 3d gravity, and the identification between Verlinde loop operators in Liouville theory and “baby universe” operators in 3d gravity.more » « less
-
A<sc>bstract</sc> We study how entanglement spreads in the boundary duals of finite-cutoff three-dimensional theories with positive, negative and zero cosmological constant, the$$ T\overline{T} $$ + Λ2two-dimensional theories. We first study the Hawking-Page transition in all three cases, and find that there is a transition in all three scenarios at the temperature where the lengths of the two cycles of the torus are the same. We then study the entanglement entropy in the thermofield double states above the Hawking-Page transition, of regions symmetrically placed on the two boundaries. We consider the case where the region is one interval on each side, and the case where it is two intervals on each side. We give an entanglement tsunami interpretation of the time-evolution of the entanglement entropies.more » « less
-
Abstract The past decade has seen tremendous progress in experimentally realizing the building blocks of quantum repeaters. Repeater architectures with multiplexed quantum memories have been proposed to increase entanglement distribution rates, but an open challenge is to maintain entanglement fidelity over long-distance links. Here, we address this with a quantum router architecture comprising many quantum memories connected in a photonic switchboard to broker entanglement flows across quantum networks. We compute the rate and fidelity of entanglement distribution under this architecture using an event-based simulator, finding that the router improves the entanglement fidelity as multiplexing depth increases without a significant drop in the entanglement distribution rate. Specifically, the router permits channel-loss-invariant fidelity, i.e. the same fidelity achievable with lossless links. Furthermore, this scheme automatically prioritizes entanglement flows across the full network without requiring global network information. The proposed architecture uses present-day photonic technology, opening a path to near-term deployable multi-node quantum networks.more » « less
-
A bstract While recent progress in the black hole information problem has shown that the entropy of Hawking radiation follows a unitary Page curve, the quantum state of Hawking radiation prior the Page time is still treated as purely thermal, containing no information about the microstructure of the black hole. We demonstrate that there is significant quantum information regarding the quantum state of the black hole in the Hawking radiation prior to the Page time. By computing of the quantum fidelity in a 2D boundary conformal field theory (BCFT) model of black hole evaporation, we demonstrate that an observer outside of an evaporating black hole may distinguish different black holes via measurements of the Hawking radiation at any time during the evaporation process, albeit with an exponentially large number of measurements. Furthermore, our results are universal, applicable to general BCFTs including those with large central charge and rational BCFTs. The techniques we develop for computing the fidelity are more generally applicable to excited states in CFT. As such, we are able to characterize more general aspects of thermalization in 2D conformal field theory.more » « less
An official website of the United States government

