skip to main content


Title: Social Networks and Instructional Reform in STEM: The Teaching-Research Nexus
Abstract

Instructional reform in STEM aims for the widespread adoption of evidence based instructional practices (EBIPS), practices that implement active learning. Research recognizes that faculty social networks regarding discussion or advice about teaching may matter to such efforts. But teaching is not the only priority for university faculty – meeting research expectations is at least as important and, often, more consequential for tenure and promotion decisions. We see value in understanding how research networks, based on discussion and advice about research matters, relate to teaching networks to see if and how such networks could advance instructional reform efforts. Our research examines data from three departments (biology, chemistry, and geosciences) at three universities that had recently received funding to enhance adoption of EBIPs in STEM fields. We evaluate exponential random graph models of the teaching network and find that (a) the existence of a research tie from one faculty member$$i$$ito another$$j$$jenhances the prospects of a teaching tie from$$i$$ito$$j$$j, but (b) even though faculty highly placed in the teaching network are more likely to be extensive EBIP users, faculty highly placed in the research network are not, dimming prospects for leveraging research networks to advance STEM instructional reforms.

 
more » « less
NSF-PAR ID:
10392286
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Innovative Higher Education
Volume:
48
Issue:
4
ISSN:
0742-5627
Page Range / eLocation ID:
p. 579-600
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Let$$(h_I)$$(hI)denote the standard Haar system on [0, 1], indexed by$$I\in \mathcal {D}$$ID, the set of dyadic intervals and$$h_I\otimes h_J$$hIhJdenote the tensor product$$(s,t)\mapsto h_I(s) h_J(t)$$(s,t)hI(s)hJ(t),$$I,J\in \mathcal {D}$$I,JD. We consider a class of two-parameter function spaces which are completions of the linear span$$\mathcal {V}(\delta ^2)$$V(δ2)of$$h_I\otimes h_J$$hIhJ,$$I,J\in \mathcal {D}$$I,JD. This class contains all the spaces of the formX(Y), whereXandYare either the Lebesgue spaces$$L^p[0,1]$$Lp[0,1]or the Hardy spaces$$H^p[0,1]$$Hp[0,1],$$1\le p < \infty $$1p<. We say that$$D:X(Y)\rightarrow X(Y)$$D:X(Y)X(Y)is a Haar multiplier if$$D(h_I\otimes h_J) = d_{I,J} h_I\otimes h_J$$D(hIhJ)=dI,JhIhJ, where$$d_{I,J}\in \mathbb {R}$$dI,JR, and ask which more elementary operators factor throughD. A decisive role is played by theCapon projection$$\mathcal {C}:\mathcal {V}(\delta ^2)\rightarrow \mathcal {V}(\delta ^2)$$C:V(δ2)V(δ2)given by$$\mathcal {C} h_I\otimes h_J = h_I\otimes h_J$$ChIhJ=hIhJif$$|I|\le |J|$$|I||J|, and$$\mathcal {C} h_I\otimes h_J = 0$$ChIhJ=0if$$|I| > |J|$$|I|>|J|, as our main result highlights: Given any bounded Haar multiplier$$D:X(Y)\rightarrow X(Y)$$D:X(Y)X(Y), there exist$$\lambda ,\mu \in \mathbb {R}$$λ,μRsuch that$$\begin{aligned} \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C})\text { approximately 1-projectionally factors through }D, \end{aligned}$$λC+μ(Id-C)approximately 1-projectionally factors throughD,i.e., for all$$\eta > 0$$η>0, there exist bounded operatorsABso thatABis the identity operator$${{\,\textrm{Id}\,}}$$Id,$$\Vert A\Vert \cdot \Vert B\Vert = 1$$A·B=1and$$\Vert \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C}) - ADB\Vert < \eta $$λC+μ(Id-C)-ADB<η. Additionally, if$$\mathcal {C}$$Cis unbounded onX(Y), then$$\lambda = \mu $$λ=μand then$${{\,\textrm{Id}\,}}$$Ideither factors throughDor$${{\,\textrm{Id}\,}}-D$$Id-D.

     
    more » « less
  2. Abstract

    Let$$X\rightarrow {{\mathbb {P}}}^1$$XP1be an elliptically fiberedK3 surface, admitting a sequence$$\omega _{i}$$ωiof Ricci-flat metrics collapsing the fibers. LetVbe a holomorphicSU(n) bundle overX, stable with respect to$$\omega _i$$ωi. Given the corresponding sequence$$\Xi _i$$Ξiof Hermitian–Yang–Mills connections onV, we prove that, ifEis a generic fiber, the restricted sequence$$\Xi _i|_{E}$$Ξi|Econverges to a flat connection$$A_0$$A0. Furthermore, if the restriction$$V|_E$$V|Eis of the form$$\oplus _{j=1}^n{\mathcal {O}}_E(q_j-0)$$j=1nOE(qj-0)forndistinct points$$q_j\in E$$qjE, then these points uniquely determine$$A_0$$A0.

     
    more » « less
  3. Abstract

    Let us fix a primepand a homogeneous system ofmlinear equations$$a_{j,1}x_1+\dots +a_{j,k}x_k=0$$aj,1x1++aj,kxk=0for$$j=1,\dots ,m$$j=1,,mwith coefficients$$a_{j,i}\in \mathbb {F}_p$$aj,iFp. Suppose that$$k\ge 3m$$k3m, that$$a_{j,1}+\dots +a_{j,k}=0$$aj,1++aj,k=0for$$j=1,\dots ,m$$j=1,,mand that every$$m\times m$$m×mminor of the$$m\times k$$m×kmatrix$$(a_{j,i})_{j,i}$$(aj,i)j,iis non-singular. Then we prove that for any (large)n, any subset$$A\subseteq \mathbb {F}_p^n$$AFpnof size$$|A|> C\cdot \Gamma ^n$$|A|>C·Γncontains a solution$$(x_1,\dots ,x_k)\in A^k$$(x1,,xk)Akto the given system of equations such that the vectors$$x_1,\dots ,x_k\in A$$x1,,xkAare all distinct. Here,Cand$$\Gamma $$Γare constants only depending onp,mandksuch that$$\Gamma Γ<p. The crucial point here is the condition for the vectors$$x_1,\dots ,x_k$$x1,,xkin the solution$$(x_1,\dots ,x_k)\in A^k$$(x1,,xk)Akto be distinct. If we relax this condition and only demand that$$x_1,\dots ,x_k$$x1,,xkare not all equal, then the statement would follow easily from Tao’s slice rank polynomial method. However, handling the distinctness condition is much harder, and requires a new approach. While all previous combinatorial applications of the slice rank polynomial method have relied on the slice rank of diagonal tensors, we use a slice rank argument for a non-diagonal tensor in combination with combinatorial and probabilistic arguments.

     
    more » « less
  4. Variational approaches are among the most powerful techniques toapproximately solve quantum many-body problems. These encompass bothvariational states based on tensor or neural networks, and parameterizedquantum circuits in variational quantum eigensolvers. However,self-consistent evaluation of the quality of variational wavefunctionsis a notoriously hard task. Using a recently developed Hamiltonianreconstruction method, we propose a multi-faceted approach to evaluatingthe quality of neural-network based wavefunctions. Specifically, weconsider convolutional neural network (CNN) and restricted Boltzmannmachine (RBM) states trained on a square latticespin-1/21/2J_1\!-\!J_2J1J2Heisenberg model. We find that the reconstructed Hamiltonians aretypically less frustrated, and have easy-axis anisotropy near the highfrustration point. In addition, the reconstructed Hamiltonians suppressquantum fluctuations in the largeJ_2J2limit. Our results highlight the critical importance of thewavefunction’s symmetry. Moreover, the multi-faceted insight from theHamiltonian reconstruction reveals that a variational wave function canfail to capture the true ground state through suppression of quantumfluctuations.

     
    more » « less
  5. Abstract

    Sequence mappability is an important task in genome resequencing. In the (km)-mappability problem, for a given sequenceTof lengthn, the goal is to compute a table whoseith entry is the number of indices$$j \ne i$$jisuch that the length-msubstrings ofTstarting at positionsiandjhave at mostkmismatches. Previous works on this problem focused on heuristics computing a rough approximation of the result or on the case of$$k=1$$k=1. We present several efficient algorithms for the general case of the problem. Our main result is an algorithm that, for$$k=O(1)$$k=O(1), works in$$O(n)$$O(n)space and, with high probability, in$$O(n \cdot \min \{m^k,\log ^k n\})$$O(n·min{mk,logkn})time. Our algorithm requires a careful adaptation of thek-errata trees of Cole et al. [STOC 2004] to avoid multiple counting of pairs of substrings. Our technique can also be applied to solve the all-pairs Hamming distance problem introduced by Crochemore et al. [WABI 2017]. We further develop$$O(n^2)$$O(n2)-time algorithms to computeall(km)-mappability tables for a fixedmand all$$k\in \{0,\ldots ,m\}$$k{0,,m}or a fixedkand all$$m\in \{k,\ldots ,n\}$$m{k,,n}. Finally, we show that, for$$k,m = \Theta (\log n)$$k,m=Θ(logn), the (km)-mappability problem cannot be solved in strongly subquadratic time unless the Strong Exponential Time Hypothesis fails. This is an improved and extended version of a paper presented at SPIRE 2018.

     
    more » « less