Let
Instructional reform in STEM aims for the widespread adoption of evidence based instructional practices (EBIPS), practices that implement active learning. Research recognizes that faculty social networks regarding discussion or advice about teaching may matter to such efforts. But teaching is not the only priority for university faculty – meeting research expectations is at least as important and, often, more consequential for tenure and promotion decisions. We see value in understanding how research networks, based on discussion and advice about research matters, relate to teaching networks to see if and how such networks could advance instructional reform efforts. Our research examines data from three departments (biology, chemistry, and geosciences) at three universities that had recently received funding to enhance adoption of EBIPs in STEM fields. We evaluate exponential random graph models of the teaching network and find that (a) the existence of a research tie from one faculty member
- NSF-PAR ID:
- 10392286
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Innovative Higher Education
- Volume:
- 48
- Issue:
- 4
- ISSN:
- 0742-5627
- Page Range / eLocation ID:
- p. 579-600
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract denote the standard Haar system on [0, 1], indexed by$$(h_I)$$ , the set of dyadic intervals and$$I\in \mathcal {D}$$ denote the tensor product$$h_I\otimes h_J$$ ,$$(s,t)\mapsto h_I(s) h_J(t)$$ . We consider a class of two-parameter function spaces which are completions of the linear span$$I,J\in \mathcal {D}$$ of$$\mathcal {V}(\delta ^2)$$ ,$$h_I\otimes h_J$$ . This class contains all the spaces of the form$$I,J\in \mathcal {D}$$ X (Y ), whereX andY are either the Lebesgue spaces or the Hardy spaces$$L^p[0,1]$$ ,$$H^p[0,1]$$ . We say that$$1\le p < \infty $$ is a Haar multiplier if$$D:X(Y)\rightarrow X(Y)$$ , where$$D(h_I\otimes h_J) = d_{I,J} h_I\otimes h_J$$ , and ask which more elementary operators factor through$$d_{I,J}\in \mathbb {R}$$ D . A decisive role is played by theCapon projection given by$$\mathcal {C}:\mathcal {V}(\delta ^2)\rightarrow \mathcal {V}(\delta ^2)$$ if$$\mathcal {C} h_I\otimes h_J = h_I\otimes h_J$$ , and$$|I|\le |J|$$ if$$\mathcal {C} h_I\otimes h_J = 0$$ , as our main result highlights: Given any bounded Haar multiplier$$|I| > |J|$$ , there exist$$D:X(Y)\rightarrow X(Y)$$ such that$$\lambda ,\mu \in \mathbb {R}$$ i.e., for all$$\begin{aligned} \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C})\text { approximately 1-projectionally factors through }D, \end{aligned}$$ , there exist bounded operators$$\eta > 0$$ A ,B so thatAB is the identity operator ,$${{\,\textrm{Id}\,}}$$ and$$\Vert A\Vert \cdot \Vert B\Vert = 1$$ . Additionally, if$$\Vert \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C}) - ADB\Vert < \eta $$ is unbounded on$$\mathcal {C}$$ X (Y ), then and then$$\lambda = \mu $$ either factors through$${{\,\textrm{Id}\,}}$$ D or .$${{\,\textrm{Id}\,}}-D$$ -
Abstract Let
be an elliptically fibered$$X\rightarrow {{\mathbb {P}}}^1$$ K 3 surface, admitting a sequence of Ricci-flat metrics collapsing the fibers. Let$$\omega _{i}$$ V be a holomorphicSU (n ) bundle overX , stable with respect to . Given the corresponding sequence$$\omega _i$$ of Hermitian–Yang–Mills connections on$$\Xi _i$$ V , we prove that, ifE is a generic fiber, the restricted sequence converges to a flat connection$$\Xi _i|_{E}$$ . Furthermore, if the restriction$$A_0$$ is of the form$$V|_E$$ for$$\oplus _{j=1}^n{\mathcal {O}}_E(q_j-0)$$ n distinct points , then these points uniquely determine$$q_j\in E$$ .$$A_0$$ -
Abstract Let us fix a prime
p and a homogeneous system ofm linear equations for$$a_{j,1}x_1+\dots +a_{j,k}x_k=0$$ with coefficients$$j=1,\dots ,m$$ . Suppose that$$a_{j,i}\in \mathbb {F}_p$$ , that$$k\ge 3m$$ for$$a_{j,1}+\dots +a_{j,k}=0$$ and that every$$j=1,\dots ,m$$ minor of the$$m\times m$$ matrix$$m\times k$$ is non-singular. Then we prove that for any (large)$$(a_{j,i})_{j,i}$$ n , any subset of size$$A\subseteq \mathbb {F}_p^n$$ contains a solution$$|A|> C\cdot \Gamma ^n$$ to the given system of equations such that the vectors$$(x_1,\dots ,x_k)\in A^k$$ are all distinct. Here,$$x_1,\dots ,x_k\in A$$ C and are constants only depending on$$\Gamma $$ p ,m andk such that . The crucial point here is the condition for the vectors$$\Gamma in the solution$$x_1,\dots ,x_k$$ to be distinct. If we relax this condition and only demand that$$(x_1,\dots ,x_k)\in A^k$$ are not all equal, then the statement would follow easily from Tao’s slice rank polynomial method. However, handling the distinctness condition is much harder, and requires a new approach. While all previous combinatorial applications of the slice rank polynomial method have relied on the slice rank of diagonal tensors, we use a slice rank argument for a non-diagonal tensor in combination with combinatorial and probabilistic arguments.$$x_1,\dots ,x_k$$ -
Variational approaches are among the most powerful techniques toapproximately solve quantum many-body problems. These encompass bothvariational states based on tensor or neural networks, and parameterizedquantum circuits in variational quantum eigensolvers. However,self-consistent evaluation of the quality of variational wavefunctionsis a notoriously hard task. Using a recently developed Hamiltonianreconstruction method, we propose a multi-faceted approach to evaluatingthe quality of neural-network based wavefunctions. Specifically, weconsider convolutional neural network (CNN) and restricted Boltzmannmachine (RBM) states trained on a square latticespin-
1/2 Heisenberg model. We find that the reconstructed Hamiltonians aretypically less frustrated, and have easy-axis anisotropy near the highfrustration point. In addition, the reconstructed Hamiltonians suppressquantum fluctuations in the largeJ_1\!-\!J_2 limit. Our results highlight the critical importance of thewavefunction’s symmetry. Moreover, the multi-faceted insight from theHamiltonian reconstruction reveals that a variational wave function canfail to capture the true ground state through suppression of quantumfluctuations.J_2 -
Abstract Sequence mappability is an important task in genome resequencing. In the (
k ,m )-mappability problem, for a given sequenceT of lengthn , the goal is to compute a table whosei th entry is the number of indices such that the length-$$j \ne i$$ m substrings ofT starting at positionsi andj have at mostk mismatches. Previous works on this problem focused on heuristics computing a rough approximation of the result or on the case of . We present several efficient algorithms for the general case of the problem. Our main result is an algorithm that, for$$k=1$$ , works in$$k=O(1)$$ space and, with high probability, in$$O(n)$$ time. Our algorithm requires a careful adaptation of the$$O(n \cdot \min \{m^k,\log ^k n\})$$ k -errata trees of Cole et al. [STOC 2004] to avoid multiple counting of pairs of substrings. Our technique can also be applied to solve the all-pairs Hamming distance problem introduced by Crochemore et al. [WABI 2017]. We further develop -time algorithms to compute$$O(n^2)$$ all (k ,m )-mappability tables for a fixedm and all or a fixed$$k\in \{0,\ldots ,m\}$$ k and all . Finally, we show that, for$$m\in \{k,\ldots ,n\}$$ , the ($$k,m = \Theta (\log n)$$ k ,m )-mappability problem cannot be solved in strongly subquadratic time unless the Strong Exponential Time Hypothesis fails. This is an improved and extended version of a paper presented at SPIRE 2018.