skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Social Networks and Instructional Reform in STEM: The Teaching-Research Nexus
Abstract Instructional reform in STEM aims for the widespread adoption of evidence based instructional practices (EBIPS), practices that implement active learning. Research recognizes that faculty social networks regarding discussion or advice about teaching may matter to such efforts. But teaching is not the only priority for university faculty – meeting research expectations is at least as important and, often, more consequential for tenure and promotion decisions. We see value in understanding how research networks, based on discussion and advice about research matters, relate to teaching networks to see if and how such networks could advance instructional reform efforts. Our research examines data from three departments (biology, chemistry, and geosciences) at three universities that had recently received funding to enhance adoption of EBIPs in STEM fields. We evaluate exponential random graph models of the teaching network and find that (a) the existence of a research tie from one faculty member$$i$$ i to another$$j$$ j enhances the prospects of a teaching tie from$$i$$ i to$$j$$ j , but (b) even though faculty highly placed in the teaching network are more likely to be extensive EBIP users, faculty highly placed in the research network are not, dimming prospects for leveraging research networks to advance STEM instructional reforms.  more » « less
Award ID(s):
1726503
PAR ID:
10392286
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Innovative Higher Education
Volume:
48
Issue:
4
ISSN:
0742-5627
Page Range / eLocation ID:
p. 579-600
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Let$$(h_I)$$ ( h I ) denote the standard Haar system on [0, 1], indexed by$$I\in \mathcal {D}$$ I D , the set of dyadic intervals and$$h_I\otimes h_J$$ h I h J denote the tensor product$$(s,t)\mapsto h_I(s) h_J(t)$$ ( s , t ) h I ( s ) h J ( t ) ,$$I,J\in \mathcal {D}$$ I , J D . We consider a class of two-parameter function spaces which are completions of the linear span$$\mathcal {V}(\delta ^2)$$ V ( δ 2 ) of$$h_I\otimes h_J$$ h I h J ,$$I,J\in \mathcal {D}$$ I , J D . This class contains all the spaces of the formX(Y), whereXandYare either the Lebesgue spaces$$L^p[0,1]$$ L p [ 0 , 1 ] or the Hardy spaces$$H^p[0,1]$$ H p [ 0 , 1 ] ,$$1\le p < \infty $$ 1 p < . We say that$$D:X(Y)\rightarrow X(Y)$$ D : X ( Y ) X ( Y ) is a Haar multiplier if$$D(h_I\otimes h_J) = d_{I,J} h_I\otimes h_J$$ D ( h I h J ) = d I , J h I h J , where$$d_{I,J}\in \mathbb {R}$$ d I , J R , and ask which more elementary operators factor throughD. A decisive role is played by theCapon projection$$\mathcal {C}:\mathcal {V}(\delta ^2)\rightarrow \mathcal {V}(\delta ^2)$$ C : V ( δ 2 ) V ( δ 2 ) given by$$\mathcal {C} h_I\otimes h_J = h_I\otimes h_J$$ C h I h J = h I h J if$$|I|\le |J|$$ | I | | J | , and$$\mathcal {C} h_I\otimes h_J = 0$$ C h I h J = 0 if$$|I| > |J|$$ | I | > | J | , as our main result highlights: Given any bounded Haar multiplier$$D:X(Y)\rightarrow X(Y)$$ D : X ( Y ) X ( Y ) , there exist$$\lambda ,\mu \in \mathbb {R}$$ λ , μ R such that$$\begin{aligned} \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C})\text { approximately 1-projectionally factors through }D, \end{aligned}$$ λ C + μ ( Id - C ) approximately 1-projectionally factors through D , i.e., for all$$\eta > 0$$ η > 0 , there exist bounded operatorsA, Bso thatABis the identity operator$${{\,\textrm{Id}\,}}$$ Id ,$$\Vert A\Vert \cdot \Vert B\Vert = 1$$ A · B = 1 and$$\Vert \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C}) - ADB\Vert < \eta $$ λ C + μ ( Id - C ) - A D B < η . Additionally, if$$\mathcal {C}$$ C is unbounded onX(Y), then$$\lambda = \mu $$ λ = μ and then$${{\,\textrm{Id}\,}}$$ Id either factors throughDor$${{\,\textrm{Id}\,}}-D$$ Id - D
    more » « less
  2. Abstract For any integer$$h\geqslant 2$$ h 2 , a set of integers$$B=\{b_i\}_{i\in I}$$ B = { b i } i I is a$$B_h$$ B h -set if allh-sums$$b_{i_1}+\ldots +b_{i_h}$$ b i 1 + + b i h with$$i_1<\ldots i 1 < < i h are distinct. Answering a question of Alon and Erdős [2], for every$$h\geqslant 2$$ h 2 we construct a set of integersXwhich is not a union of finitely many$$B_h$$ B h -sets, yet any finite subset$$Y\subseteq X$$ Y X contains an$$B_h$$ B h -setZwith$$|Z|\geqslant \varepsilon |Y|$$ | Z | ε | Y | , where$$\varepsilon :=\varepsilon (h)$$ ε : = ε ( h ) . We also discuss questions related to a problem of Pisier about the existence of a setAwith similar properties when replacing$$B_h$$ B h -sets by the requirement that all finite sums$$\sum _{j\in J}b_j$$ j J b j are distinct. 
    more » « less
  3. Abstract Let us fix a primepand a homogeneous system ofmlinear equations$$a_{j,1}x_1+\dots +a_{j,k}x_k=0$$ a j , 1 x 1 + + a j , k x k = 0 for$$j=1,\dots ,m$$ j = 1 , , m with coefficients$$a_{j,i}\in \mathbb {F}_p$$ a j , i F p . Suppose that$$k\ge 3m$$ k 3 m , that$$a_{j,1}+\dots +a_{j,k}=0$$ a j , 1 + + a j , k = 0 for$$j=1,\dots ,m$$ j = 1 , , m and that every$$m\times m$$ m × m minor of the$$m\times k$$ m × k matrix$$(a_{j,i})_{j,i}$$ ( a j , i ) j , i is non-singular. Then we prove that for any (large)n, any subset$$A\subseteq \mathbb {F}_p^n$$ A F p n of size$$|A|> C\cdot \Gamma ^n$$ | A | > C · Γ n contains a solution$$(x_1,\dots ,x_k)\in A^k$$ ( x 1 , , x k ) A k to the given system of equations such that the vectors$$x_1,\dots ,x_k\in A$$ x 1 , , x k A are all distinct. Here,Cand$$\Gamma $$ Γ are constants only depending onp,mandksuch that$$\Gamma Γ < p . The crucial point here is the condition for the vectors$$x_1,\dots ,x_k$$ x 1 , , x k in the solution$$(x_1,\dots ,x_k)\in A^k$$ ( x 1 , , x k ) A k to be distinct. If we relax this condition and only demand that$$x_1,\dots ,x_k$$ x 1 , , x k are not all equal, then the statement would follow easily from Tao’s slice rank polynomial method. However, handling the distinctness condition is much harder, and requires a new approach. While all previous combinatorial applications of the slice rank polynomial method have relied on the slice rank of diagonal tensors, we use a slice rank argument for a non-diagonal tensor in combination with combinatorial and probabilistic arguments. 
    more » « less
  4. Variational approaches are among the most powerful techniques toapproximately solve quantum many-body problems. These encompass bothvariational states based on tensor or neural networks, and parameterizedquantum circuits in variational quantum eigensolvers. However,self-consistent evaluation of the quality of variational wavefunctionsis a notoriously hard task. Using a recently developed Hamiltonianreconstruction method, we propose a multi-faceted approach to evaluatingthe quality of neural-network based wavefunctions. Specifically, weconsider convolutional neural network (CNN) and restricted Boltzmannmachine (RBM) states trained on a square latticespin-1/2 1 / 2 J_1\!-\!J_2 J 1 J 2 Heisenberg model. We find that the reconstructed Hamiltonians aretypically less frustrated, and have easy-axis anisotropy near the highfrustration point. In addition, the reconstructed Hamiltonians suppressquantum fluctuations in the largeJ_2 J 2 limit. Our results highlight the critical importance of thewavefunction’s symmetry. Moreover, the multi-faceted insight from theHamiltonian reconstruction reveals that a variational wave function canfail to capture the true ground state through suppression of quantumfluctuations. 
    more » « less
  5. Abstract Let$$p_{1},\ldots ,p_{n}$$ p 1 , , p n be a set of points in the unit square and let$$T_{1},\ldots ,T_{n}$$ T 1 , , T n be a set of$$\delta $$ δ -tubes such that$$T_{j}$$ T j passes through$$p_{j}$$ p j . We prove a lower bound for the number of incidences between the points and tubes under a natural regularity condition (similar to Frostman regularity). As a consequence, we show that in any configuration of points$$p_{1},\ldots , p_{n} \in [0,1]^{2}$$ p 1 , , p n [ 0 , 1 ] 2 along with a line$$\ell _{j}$$ j through each point$$p_{j}$$ p j , there exist$$j\neq k$$ j k for which$$d(p_{j}, \ell _{k}) \lesssim n^{-2/3+o(1)}$$ d ( p j , k ) n 2 / 3 + o ( 1 ) . It follows from the latter result that any set of$$n$$ n points in the unit square contains three points forming a triangle of area at most$$n^{-7/6+o(1)}$$ n 7 / 6 + o ( 1 ) . This new upper bound for Heilbronn’s triangle problem attains the high-low limit established in our previous work arXiv:2305.18253. 
    more » « less