skip to main content

Title: Large field-of-view thermal imaging via all-silicon meta-optics
A broad range of imaging and sensing technologies in the infrared require large field-of-view (FoV) operation. To achieve this, traditional refractive systems often employ multiple elements to compensate for aberrations, which leads to excess size, weight, and cost. For many applications, including night vision eye-wear, air-borne surveillance, and autonomous navigation for unmanned aerial vehicles, size and weight are highly constrained. Sub-wavelength diffractive optics, also known as meta-optics, can dramatically reduce the size, weight, and cost of these imaging systems, as meta-optics are significantly thinner and lighter than traditional refractive lenses. Here, we demonstrate 80° FoV thermal imaging in the long-wavelength infrared regime (8–12 µm) using an all-silicon meta-optic with an entrance aperture and lens focal length of 1 cm.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Date Published:
Journal Name:
Applied Optics
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rapid advancements in autonomous systems and the Internet of Things have necessitated the development of compact and low-power image sensors to bridge the gap between the digital and physical world. To that end, sub-wavelength diffractive optics, commonly known as meta-optics, have garnered significant interest from the optics and photonics community due to their ability to achieve multiple functionalities within a small form factor. Despite years of research, however, the performance of meta-optics has often remained inferior compared to that of traditional refractive optics. In parallel, computational imaging techniques have emerged as a promising path to miniaturize optical systems, albeit often at the expense of higher power and latency. The lack of desired performance from either meta-optical or computational solutions has motivated researchers to look into a jointly optimized meta-optical–digital solution. While the meta-optical front end can preprocess the scene to reduce the computational load on the digital back end, the computational back end can in turn relax requirements on the meta-optics. In this Perspective, we provide an overview of this up-and-coming field, termed here as “software-defined meta-optics.” We highlight recent contributions that have advanced the current state of the art and point out directions toward which future research efforts should be directed to leverage the full potential of subwavelength photonic platforms in imaging and sensing applications. Synergistic technology transfer and commercialization of meta-optic technologies will pave the way for highly efficient, compact, and low-power imaging systems of the future.

    more » « less
  2. Metasurfaces have been studied and widely applied to optical systems. A metasurface-based flat lens (metalens) holds promise in wave-front engineering for multiple applications. The metalens has become a breakthrough technology for miniaturized optical system development, due to its outstanding characteristics, such as ultrathinness and cost-effectiveness. Compared to conventional macro- or meso-scale optics manufacturing methods, the micro-machining process for metalenses is relatively straightforward and more suitable for mass production. Due to their remarkable abilities and superior optical performance, metalenses in refractive or diffractive mode could potentially replace traditional optics. In this review, we give a brief overview of the most recent studies on metalenses and their applications with a specific focus on miniaturized optical imaging and sensing systems. We discuss approaches for overcoming technical challenges in the bio-optics field, including a large field of view (FOV), chromatic aberration, and high-resolution imaging. 
    more » « less
  3. Evans, Christopher J. ; Bryant, Julia J. ; Motohara, Kentaro (Ed.)
    We present the current design of WFOS, a wide-field UV/optical (0.31-1.0 µm) imaging spectrograph planned for first-light on the TMT International Observatory 30 m telescope. WFOS is optimized for high sensitivity across the entire optical waveband for low-to-moderate resolution (R ∼ 1500-5000) long-slit and multi-slit spectroscopy of very faint targets over a contiguous field of view of 8′ .3×3 ′ .0 at the f/15 Nasmyth focus of TMT. A key design goal for WFOS is stability and repeatability in all observing modes, made possible by its gravity-invariant opto-mechanical structure, with a vertical rotation axis and all reconfigurable components moving only in planes defined by tiered optical benches parallel to the Nasmyth platform. WFOS’s optics include a linear ADC correcting a 9′ diameter field, including both the science FoV and 4 patrolling acquisition, guiding, and wavefront sensing camera systems; a novel 2-mirror reflective collimator allowing the science FoV to be centered on the telescope optical axis; a dichroic beamsplitter dividing the collimated beam into 2 wavelength-optimized spectrometer channels (blue: 0.31-0.56 µm; red: 0.54-1.04 µm); selectable transmissive dispersers (VPH and/or VBG) with remotely configurable grating tilt (angle of incidence) and camera articulation that enable optimization of diffraction efficiency and wavelength coverage in each channel; all-refractive, wavelength-optimized f/2 spectrograph cameras, and UV/blue and red-optimized detector systems. The predicted instrumental through put of WFOS for spectroscopy averages > 56% over the full 0.31-1 µm range, from the ADC to the detector. When combined with the 30 m TMT aperture, WFOS will realize a factor of ∼20 gain in sensitivity compared to the current state of the art on 8-10 m-class telescopes. 
    more » « less
  4. Foveated imaging provides a better tradeoff between situational awareness (field of view) and resolution, and is critical in long wavelength infrared regimes because of the size, weight, power, and cost of thermal sensors. We demonstrate computational foveated imaging by exploiting the ability of a meta-optical frontend to discriminate between different polarization states and a computational backend to reconstruct the captured image/video. The frontend is a three-element optic: the first element, which we call the “foveal” element, is a metalens that focuses s-polarized light at a distance off1without affecting the p-polarized light; the second element, which we call the “perifovea” element, is another metalens that focuses p-polarized light at a distance off2without affecting thes-polarized light. The third element is a freely rotating polarizer that dynamically changes the mixing ratios between the two polarization states. Both the foveal element (focal length=150mm; diameter=75mm) and the perifoveal element (focal length=25mm; diameter=25mm) were fabricated as polarization-sensitive, all-silicon, meta surfaces resulting in a large-aperture, 1:6 foveal expansion, thermal imaging capability. A computational backend then utilizes a deep image prior to separate the resultant multiplexed image or video into a foveated image consisting of a high resolution center and a lower-resolution large field of view context. We build a prototype system and demonstrate 12 frames per second real-time, thermal, foveated image and video capture..

    more » « less
    more » « less